3 resultados para Roundup
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Using the LAMP method, a highly specific and sensitive detection system for genetically modified soybean (Roundup Ready) was designed. In this detection system, a set of four primers was designed by targeting the exogenous 35S epsps gene. Target DNA was amplified and visualized on agarose gel within 45 min under isothermal conditions at 65 degrees C. Without gel electrophoresis, the LAMP amplicon was visualized directly in the reaction tube by the addition of SYBR Green I for naked-eye inspection. The detection sensitivity of LAMP was 10-fold higher than the nested PCR established in our laboratory. Moreover, the LAMP method was much quicker, taking only 70 min, as compared with 300 min for nested PCR to complete the analysis of the GM soybean. Compared with traditional PCR approaches, the LAMP procedure is faster and more sensitive, and there is no need for a special PCR machine or electrophoresis equipment. Hence, this method can be a very useful tool for GMO detection and is particularly convenient for fast screening.
Resumo:
We used nested-polymerase chain reaction (PCR) to detect Roundup Ready soybean in aquatic feeds and feeding tilapias. A template concentration of 10(-10) g mu L-1 DNA solution could be detected with a dilute degree of 0.01%. Most (90.6%) of the aquatic feeds containing soybean byproduct included exogenous DNA segments. We also compared genetically modified (GM) soybean with non-GM soybean diets in feeding tilapias (Oreochromis niloticus, GIFT strain) and examined the residual fragments (254 bp) of GM soybeans. Tilapias receiving GM soybean diets had DNA fragments in different tissues and organs, indicating that exogenous GM genes were absorbed systemically and not completely degraded by the tilapia's alimentary canal.
Resumo:
An electrochemical DNA biosensor was fabricated by immobilizing DNA probe on aluminum ion films that were electrodeposited on the surface of the stearic acid-modified carbon paste electrode (CPE). DNA immobilization and hybridization were characterized with cyclic voltammetry (CV) by using methylene blue (MB) as indicator. MB has a couple of well-defined voltammetric redox peaks at the CPE. The currents of redox peaks of MB decreased after depositing aluminum ion films on the CPE (Al(III)/CPE) and increased dramatically after immobilizing DNA probe (ssDNA/Al(III)/CPE). Hybridization of DNA probe led to a marked decrease of the peak currents of MB, which can be used to detect the target single-stranded DNA. The conditions for the preparation of Al(III)/CPE, and DNA immobilization and hybridization were optimized. The specific sequences related to bar transgene in the transgenic corn and the PCR amplification of CP4 epsps gene from the sample of transgenic roundup ready soybean were detected by differential pulse voltammetry (DPV) with this new electrochemical DNA biosensor. The difference between the peak currents of MB at ssDNA/Al(III)/CPE and that at hybridization DNA modified electrode (dsDNA/Al(III)/CPE) was applied to determine the Specific sequence related to the target bar gene with the dynamic range comprised between 1.0 X 10(-7) mol/L to 1.0 x 10(-4) mol/L. A detection limit of 2.25 x.10(-8) mol/L. of oligonucleotides can be estimated.