51 resultados para Rough interfaces

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic approach is proposed to obtain the interfacial interatomic potentials. By inverting ab initio adhesive energy curves for the metal-MgO ceramic interfaces, We derive interfacial potentials between Ag and O2-, Ag and Mg2+, Al and O2-, Al and Mg2+. The interfacial potentials, obtained from this method, demonstrate general features of bondings between metal atoms and ceramic ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics of low-speed fluid streaks occurring under sheared air-water interfaces were examined by means of hydrogen bubble visualization technique. A critical shear condition under which the streaky structure first appears was determined to be u(tau) approximate to 0.19 cm/s. The mean spanwise streak spacing increases with distance from the water surface owing to merging and bursting processes, and a linear relationship describing variation of non-dimensional spacing <(+)over bar> versus y(+) was found essentially independent of shear stress on the interface. Values of <(+)over bar>, however, are remarkably smaller than their counterparts in the near-wall region of turbulent boundary layers. Though low-speed streaks occur randomly in time and space, the streak spacing exhibits a lognormal probability distribution behavior. A tentative explanation concerning the formation of streaky structure is suggested, and the fact that <(+)over bar> takes rather smaller values than that in wall turbulence is briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel super-hydrophobic stearic acid (STA) film with a water contact angle of 166° was prepared by chemical adsorption on aluminum wafer coated with polyethyleneimine (PEI) film. The micro-tribological behavior of the super-hydrophobic STA monolayer was compared with that of the polished and PEI-coated Al surfaces. The effect of relative humidity on the adhesion and friction was investigated as well. It was found that the STA monolayer showed decreased friction, while the adhesive force was greatly decreased by increasing the surface roughness of the Al wafer to reduce the contact area between the atomic force microscope (AFM) tip and the sample surface to be tested. Thus the friction and adhesion of the Al wafer was effectively decreased by generating the STA monolayer, which indicated that it could be feasible and rational to prepare a surface with good adhesion resistance and lubricity by properly controlling the surface morphology and the chemical composition. Both the adhesion and friction decreased as the relative humidity was lowered from 65% to 10%, though the decrease extent became insignificant for the STA monolayer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A strengthening mechanism arising from a type of inorganic nanostructure in the organic matrix layers is presented by studying the structural and mechanical properties of the interfaces in nacre. This nanostructural mechanism not only averagely increases the fracture strength of the organic matrix interfaces by about 5 times, but also effectively arrests the cracks in the organic matrix layers and causes the crack deflection in this biomaterial. The present investigation shows that the main mechanism governing the strength of the organic matrix interfaces relies on the inorganic nanostructures rather than the organic matrix. This study provides a guide to the interfacial design of synthetic materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium carbide particle (TiCp) reinforced Ni alloy composite coatings were synthesized by laser cladding using a cw 3 kW CO2 laser. Two kinds of coatings were present in terms of TiCp origins, i.e. undissolved and in situ reacted TiCp, respectively. The former came from the TiCp pre-coated on the sample, whereas the latter from in situ reaction between titanium and graphite in the molten pool during laser irradiation. Conventional and high-resolution transmission electron microscope observations showed the epitaxial growth of TiC, the precipitation of CrB, and the chemical reaction between Ti and B elements around phase interfaces of undissolved TiCp. The hardness, H, and elastic modulus, E, were measured by nanoindentation of the matrix near the TiCp interface. For undissolved TiCp, the loading curve revealed pop-in phenomena caused by the plastic deformation of the crack formation or debounding of TiCp from the matrix. As for in situ generated TiCp, no pop-in mark appears. On the other hand, in situ reacted TiCp led to much higher hardness and modulus than that in the case of undissolved TiCp. The coating reinforced by in situ generated TiCp displayed the highest impact wear resistance at both low and high impact conditions, as compared with coatings with undissolved TiCp and without TiCp. The impact wear resistance of the coating reinforced by undissolved TiCp increases at a low impact work but decreases at a high impact work, as compared with the single Ni alloy coating. The degree of wear for the composite coating depends primarily on the debonding removal of TiCp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optimization of off-null ellipsometry is described with emphasis on the improvement of sample thickness sensitivity. Optimal conditions are dependent on azimuth angle settings of the polarizer, compensator, and analyzer in a polarizer-compensator-sample-analyzer ellipsometer arrangement. Numerical simulation utilized offers an approach to present the dependence of the sensitivity on the azimuth angle settings, from which optimal settings corresponding to the best sensitivity are derived. For a series of samples of SiO2 layer (thickness in the range of 1.8-6.5 nm) on silicon substrate, the theory analysis proves that sensitivity at the optimal settings is increased 20 times compared to that at null settings used in most works, and the relationship between intensity and thickness is simplified as a linear type instead of the original nonlinear type, with the relative error reduced to similar to 1/100 at the optimal settings. Furthermore the discussion has been extended toward other factors affecting the sensitivity of the practical system, such as the linear dynamic range of the detector, the signal-to-noise ratio and the intensity from the light source, etc. Experimental results from the investigation Of SiO2 layer on silicon substrate are chosen to verify the optimization. (c) 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramic/metal interfaces were studied that fail by atomistic separation accompanied by plastic dissipation in the metal. The macroscopic toughness of the specific Ni alloy/Al2O3 interface considered is typically on the order of ten times the atomistic work of separation in mode I and even higher if combinations of mode I and mode II act on the interface. Inputs to the computational model of interface toughness are: (i) strain gradient plasticity applied to the Ni alloy with a length parameter determined by an indentation test, and (ii) a potential characterizing mixed mode separation of the interface fit to atomistic results. The roles of the several length parameters in the strain gradient plasticity are determined for indentation and crack growth. One of the parameters is shown to be of dominant importance, thus establishing that indentation can be used to measure the relevant length parameter. Recent results for separation of Ni/Al2O3 interfaces computed by atomistic methods are reviewed, including a set of results computed for mixed mode separation. An approximate potential fit to these results is characterized by the work of separation, the peak separation stress for normal separation and the traction-displacement relation in pure shearing of the interface. With these inputs, the model for steady-state crack growth is used to compute the toughness of the interface under mode I and under the full range of mode mix. The effect of interface strength and the work of separation on macroscopic toughness is computed. Fundamental implications for plasticity-enhanced toughness emerge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrowetting is one of the most effective methods to enhance wettability. A significant change of contact angle for the liquid droplet can result from the surface microstructures and the external electric field, without altering the chemical composition of the system. During the electrowetting process on a rough surface, the droplet exhibits a sharp transition from the Cassie-Baxter to the Wenzel regime at a low critical voltage. In this paper, a theoretical model for electrowetting is put forth to describe the dynamic electrical control of the wetting behavior at the low voltage, considering the surface topography. The theoretical results are found to be in good agreement with the existing experimental results. (c) Koninklijke Brill NV, Leiden, 2008.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This short communication presents our recent studies to implement numerical simulations for multi-phase flows on top-ranked supercomputer systems with distributed memory architecture. The numerical model is designed so as to make full use of the capacity of the hardware. Satisfactory scalability in terms of both the parallel speed-up rate and the size of the problem has been obtained on two high rank systems with massively parallel processors, the Earth Simulator (Earth simulator research center, Yokohama Kanagawa, Japan) and the TSUBAME (Tokyo Institute of Technology, Tokyo, Japan) supercomputers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geckos and many insects have evolved elastically anisotropic adhesive tissues with hierarchical structures that allow these animals not only to adhere robustly to rough surfaces but also to detach easily upon movement. In order to improve Our understanding of the role of elastic anisotropy in reversible adhesion, here we extend the classical JKR model of adhesive contact mechanics to anisotropic materials. In particular, we consider the plane strain problem of a rigid cylinder in non-slipping adhesive contact with a transversely isotropic elastic half space with the axis of symmetry oriented at an angle inclined to the surface. The cylinder is then subjected to an arbitrarily oriented pulling force. The critical force and contact width at pull-off are calculated as a function of the pulling angle. The analysis shows that elastic anisotropy leads to an orientation-dependent adhesion strength which can vary strongly with the direction of pulling. This study may suggest possible mechanisms by which reversible adhesion devices can be designed for engineering applications. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of a Michelson interferometer with a self-pumped phase-conjugate mirror to measure small vibration amplitudes of a rough surface is described. The distorted wave front of the light that is diffusely reflected from the rough surface is restored by phase conjugation to provide an interference signal with a high signal-to-noise ratio. The vibration amplitudes of a stainless-steel sample are measured with a precision of similar to 5 nm. (C) 2000 Optical Society of America OCIS codes: 120.3180, 190.5040, 120.7280.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The general formulation of double refraction or internal double reflection for any directions of incidence and arbitrary orientation of the optic axis in a uniaxial crystal is analysed in terms of Huygens' principle. Then double refraction and double reflection along the sequential interfaces in a crystal are discussed. On this basis, if the parameters of the interface are chosen appropriately, the range of angular separation between the ordinary ray and extraordinary ray can be much greater, It is useful for crystal element design. Finally, as an example, an optimum design of the Output end interface for a 2 x 2 electro-optic switch is given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As distinct from coated photonic crystals, in this paper we propose a novel one that is made of dielectric tubes arranged in a close-packet square lattice. Without metallic cores, this structure is low-loss and convenient to fabricate. A left-handed frequency region is found in the second band by dispersion characteristic analysis. Without inactive modes for the transverse electric mode, negative refraction and subwavelength imaging are demonstrated by the finite-difference time-domain simulations with two symmetrical interfaces, i.e. Gamma X and Gamma M.