3 resultados para Rooke, John G.
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Amblycipitidae Day, 1873 is an Asian family of catfishes (Siluriformes) usually considered to contain 28 species placed in three genera: Amblyceps (14 spp.), Liobagrus (12 spp.) and Xiurenbagrus (2 spp.). Morphology-based systematics has supported the monophyly of this family, with some authors placing Amblycipitidae within a larger group including Akysidae, Sisoridae and Aspredinidae, termed the Sisoroidea. Here we investigate the phylogenetic relationships among four species of Amblyceps, six species of Liobagrus and the two species of Xiurenbagrus with respect to other sisoroid taxa as well as other catfish groups using 6100 aligned base pairs of DNA sequence data from the rag1 and rag2 genes of the nuclear genome and from three regions (cyt b, COL ND4 plus tRNA-His and tRNA-Ser) of the mitochondrial genome. Parsimony and Bayesian analyses of the data indicate strong support for a diphyletic Amblycipitidae in which the genus Amblyceps is the sister group to the Sisoridae and a clade formed by genera Liobagrus and Xiurenbagrus is the sister group to Akysidae. These taxa together form a well supported monophyletic group that assembles all Asian sisoroid taxa, but excludes the South American Aspredinidae. Results for aspredinids are consistent with previous molecular studies that indicate these catfishes are not sisoroids, but the sister group to the South American doradoid catfishes (Auchenipteridae + Doradidae). The redefined sisoroid clade plus Bagridae, Horabagridae and (Ailia + Laides) make up a larger monophyletic group informally termed "Big Asia." Likelihood-based SH tests and Bayes Factor comparisons of the rag and the mitochondrial data partitions considered separately and combined reject both the hypothesis of amblycipitid monophyly and the hypothesis of aspredinid inclusion within Sisoroidea. This result for amblycipitids conflicts with a number of well documented morphological synapomorphies that we briefly review. Possible nomenclatural changes for amblycipitid taxa are noted.
Resumo:
A polyphasic approach was used to clarify the taxonomy of the water-bloom-forming oscillatorioid cyanobacteria. Seventy-five strains of oscillatorioid cyanobacteria were characterized by 16S rDNA sequence analysis, DNA base composition, DNA-DNA hybridization, fatty acid composition, phycobilin pigment composition, complementary chromatic adaptation, morphological characters, growth temperature and salinity tolerance. Phylogenetic analysis based on 165 rDNA sequences divided the strains into six groups, all of which were clearly separated from the type species of the genus Oscillatoria, Oscillatoria princeps Gomont NIVA CYA 150. Therefore, these strains should be classified into genera other than Oscillatoria. Groups I-III were closely related to one another and groups IV-VI were distinct from one another and from groups I to III. Group I was further divided into two subgroups, group I-pc, which includes strains containing only phycocyanin (PC), and group I-pe, which includes strains containing large amounts of phycoerythrin (PE) in addition to PC. This phenotypic distinction was supported by DNA-DNA hybridization studies. Based on the properties examined herein and data from traditional, botanical taxonomic studies, the groups and subgroups were classified into single species and we propose either emended or new taxonomic descriptions for Planktothrix agardhii (type strain NIES 204(T)), Planktothrix rubescens (type strain CCAP 1459/22(T)) Planktothrix pseudagardhii sp. nov. (type strain T1-8-4(T)), Planktothrix mougeotii (type strain TR1-5(T)), Planktothricoides raciborskii gen. nov., comb. nov. (type strain NIES 207(T)), Tychonema bourrellyi (type strain CCAP 1459/11B(T)) and Limnothrix redekei (type strain NIVA CYA 277/1(T)).