8 resultados para Rivero, Atanasio, d. 1930
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
采用面一面接触的三维离散元刚性块体模型,从实测节理面中取出其中的三组,按照其倾向、倾角和节理间距将三峡永久船闸未开挖的区域划分为10~5个离散单元,通过施加力边界条件,给出了与实测初始地应力场接近的数值模拟结果;然后,分4步模拟了永久船闸的开挖过程。计算结果表明:开挖过程会引起节理面出现张开趋势,个别岩体还会沿着节理面滑移。岩体位移的不对称现象较为自然地说明了由节理引起的岩体各向异性特征。
Resumo:
Based on the first-order upwind and second-order central type of finite volume( UFV and CFV) scheme, upwind and central type of perturbation finite volume ( UPFV and CPFV) schemes of the Navier-Stokes equations were developed. In PFV method, the mass fluxes of across the cell faces of the control volume (CV) were expanded into power series of the grid spacing and the coefficients of the power series were determined by means of the conservation equation itself. The UPFV and CPFV scheme respectively uses the same nodes and expressions as those of the normal first-order upwind and second-order central scheme, which is apt to programming. The results of numerical experiments about the flow in a lid-driven cavity and the problem of transport of a scalar quantity in a known velocity field show that compared to the first-order UFV and second-order CFV schemes, upwind PFV scheme is higher accuracy and resolution, especially better robustness. The numerical computation to flow in a lid-driven cavity shows that the under-relaxation factor can be arbitrarily selected ranging from 0.3 to 0. 8 and convergence perform excellent with Reynolds number variation from 102 to 104.
Resumo:
A two-dimensional (2-D) vortex-induced vibration (VIV) prediction model for high aspect ratio (LID) riser subjected to uniform and sheared flow is studied in this paper. The nonlinear structure equations are considered. The near wake dynamics describing the fluctuating nature of vortex shedding is modeled using classical van der Pol equation. A new approach was applied to calibrate the empirical parameters in the wake oscillator model. Compared the predicted results with the experimental data and computational fluid dynamic (CFD) results. Good agreements are observed. It can be concluded that the present model can be used as simple computational tool in predicting some aspects of VIV of long flexible structures. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Elastodynamic stress intensity factor histories of an unbounded solid containing a semi-infinite plane crack that propagates at a constant velocity under 3-D time-independent combined mode loading are considered. The fundamental solution, which is the response of point loading, is obtained. Then, stress intensity factor histories of a general loading system are written out in terms of superposition integrals. The methods used here are the Laplace transform methods in conjunction with the Wiener-Hopf technique.
Resumo:
In the present paper, a multifluid model of two-phase flows with pulverized-coal combustion, based on a continuum-trajectory model with reacting particle phase, is developed and employed to simulate the 3-D turbulent two-phase hows and combustion in a new type of pulverized-coal combustor with one primary-air jet placed along the wall of the combustor. The results show that: (1) this continuum-trajectory model with reacting particle phase can be used in practical engineering to qualitatively predict the flame stability, concentrations of gas species, possibilities of slag formation and soot deposition, etc.; (2) large recirculation zones can be created in the combustor, which is favorable to the ignition and flame stabilization.
Resumo:
The dynamic stress intensity factor histories for a half plane crack in an otherwise unbounded elastic body are analyzed. The crack is subjected to a traction distribution consisting of two pairs of suddenly-applied shear point loads, at a distance L away from the crack tip. The exact expression for the combined mode stress intensity factors as the function of time and position along the crack edge is obtained. The method of solution is based on the direct application of integral transforms together with the Wiener-Hopf technique and the Cagniard-de Hoop method, which were previously believed to be inappropriate. Some features of solutions are discussed and the results are displayed in several figures.
Resumo:
This study was designed to comprehensively analyze the differential expression of proteins from human umbilical vein endothelial cells (HUVECs) exposed to tumor conditioned medium (TCM) and to identify the key regulator in the cell cycle progression. The HUVECs were exposed to TCM from breast carcinoma cell line MDA-MB-231, then their cell cycle distribution was measured by flow cytometer (FCM). The role of protein in cell cycle progression was detected via two-dimensional polyacrylamide gel electrophoresis (2-DE) and western blotting. Following the stimulation of TCM, HUVECs showed a more cells in the S phase than did the negative control group (ECGF-free medium with 20% FBS), but the HUVECs' level was similar to the positive control group (medium with 25 mug/ml ECGF and 20% FBS). Increased expression of cyclin D-1/E and some changes in other related proteins occurred after incubation with TCM. From our results, we can conclude that breast carcinoma cell line MDA-MB-231 may secrete soluble pro-angiogenic factors that induce the HUVEC angiogenic switch, during which the expression of cell cycle regulator cyclin D-1/E increases and related proteins play an important role in this process.