171 resultados para Rings

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

'Notch-sensitive regions' have been observed during a series of experimental investigations into the dynamic plastic behaviour and failure of thin-walled metallic radially notched circular rings with are-shaped supports subjected to concentrated impact loads. The experimental results show that the exterior notches at some regions have no effect on the deformation of the rings, but do have effect at the remaining regions. The notch-sensitive region is theoretically determined by using the equivalent structures technique; fairly good agreement has been reached between the simple theory and the experimental results. Both dimensional and theoretical analyses prove that whether a plastic hinge formed or not at the notched section does not depend on the mean radius of the ring and the input kinetic energy. It depends on the weak coefficient of the notched section and the angle of the support. Generally speaking, there are mainly three failure modes for a notched circular ring with are-shaped support under impact loading: Mode I, large inelastic deformation when the notch is outside the sensitive region, in this case the ring deforms as a normal one; Mode II, large inelastic deformation only at some part of the ring and tearing occurred at the notched sections; Mode III, large inelastic deformation and total rupture occurred at the notched sections. It is believed that the present study could assist the understanding of the dynamic behaviour and failure of other kinds of nonstraight components with macroscopic imperfections under impulsive loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics of the cladding band structure of air-core photonic crystal fibers with silica rings in triangular lattice are investigated by using a standard plane wave method. The numerical results show that light can be localized in the air core by the photonic band gaps of the fiber. By increasing the air-filling fraction, the band gap edges of the low frequency photonic band gaps shift to shorter wavelength.. whereas the band gap width decreases linearly. In order to make a specified light fall in the low frequency band gaps of the fiber, the interplay of the silica ring spacing and the air-filling fraction is also analyzed. It shows that the silica ring spacing increases monotonously when the air-filling fraction is increased, and the spacing range increases exponentially. This type fiber might have potential in infrared light transmission. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the Coulomb interaction on the energy spectrum and anisotropic distribution of two electron states in a quantum ring in the presence of Rashba spin-orbit interaction (RSOI) and Dresselhaus SOI (DSOI) is investigated in the presence of a perpendicular magnetic field. We find that the interplay between the RSOI and DSOI makes the single quantum ring behaves like a laterally coupled quantum dot and the interdot coupling can be tuned by changing the strengths of the SOIs. The interplay can lead to singlet-triplet state mixing and anticrossing behavior when the singlet and triplet states meet with increasing magnetic field. The two electron ground state displays a bar-bell-like spatial anisotropic distribution in a quantum ring at a specific crystallographic direction, i.e., [110] or [1 (1) over bar0], which can be switched by reversing the direction of the perpendicular electric field. The ground state exhibits a singlet-triplet state transition with increasing magnetic field and strengths of RSOI and DSOI. An anisotropic electron distribution is predicted which can be detected through the measurement of its optical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the transmission probability of a single electron transmission through a quantum ring device based on the single-band effective mass approximation method and transfer matrix theory. The time-dependent Schrodinger equation is applied on a Gaussian wave packet passing through the quantum ring system. The electron tunneling resonance peaks split when the electron transmits through a double quantum ring. The splitting energy increases as the distance between the two quantum rings decreases. We studied the tunneling time through the single electron transmission quantum ring from the temporal evolution of the Gaussian wave packet. The electron probability density is sensitive to the thickness of the barrier between the two quantum rings. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We theoretically investigate the spin transport in two-terminal mesoscopic rings in the presence of both the Rashba spin-orbit interaction (RSOI) and the Dresselhaus spin-orbit interaction (DSOI). We find that the interplay between the RSOI and DSOI breaks the original cylindric symmetry of the mesoscopic rings and consequently leads to the anisotropic spin transport, i.e., the conductance is sensitive to the positions of the incoming and outgoing leads. The anisotropic spin transport can survive even in the presence of disorder caused by impurity elastic scattering in a realistic system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-dimensionally arranged gold rings were prepared by depositing a polymeric membrane bearing a dense array of uniform pores onto a mica substrate, filling the pores with a solution of a gold precursor, evaporation of the solvent and calcinations. The epitaxy of gold rings is confirmed by x-ray diffraction measurements, and the epitaxial relationship between gold rings and the mica was found to be Au(111)[1-10]parallel to mica(001)[010]. The polar and azimuthal angular spreads are 0.3 degrees and 1 degrees, respectively, which is at least equal to or better than the quality of the corresponding epitaxial gold-film on mica. (c) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three-dimensional morphology of In(Ga)As nanostructures embedded in a GaAs matrix is investigated by combining atomic force microscopy and removal of the GaAs cap layer by selective wet etching. This method is used to investigate how the morphology of In(Ga)As quantum dots changes upon GaAs capping and subsequent in situ etching with AsBr3. A wave function calculation based on the experimentally determined morphologies suggests that quantum dots transform into quantum rings during in situ etching. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate theoretically electron spin states in one-dimensional and two-dimensional (2D) hard-wall mesoscopic rings in the presence of both the Rashba spin-orbit interaction (RSOI) and the Dresselhaus spin-orbit interaction (DSOI) in a perpendicular magnetic field. The Hamiltonian of the RSOI alone is mathematically equivalent to that of the DSOI alone using an SU(2) spin rotation transformation. Our theoretical results show that the interplay between the RSOI and DSOI results in an effective periodic potential, which consequently leads to gaps in the energy spectrum. This periodic potential also weakens and smoothens the oscillations of the persistent charge current and spin current and results in the localization of electrons. For a 2D ring with a finite width, higher radial modes destroy the periodic oscillations of persistent currents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-walled carbon nanotube (SWNT) rings with a diameter of about 100 nm have been prepared by thermally decomposing hydrocarbon in a floating catalyst system. These rings appeared to consist mostly of SWNT toroids. High resolution transmission electron microscopy showed that these rings were composed of tens of SWNTs with a tightly packed arrangement. The production of SWNT rings was improved through optimizing various growth parameters, such as growth temperature, sublimation temperature of the catalyst, different gas flows and different catalyst components. The growth mechanism of the SWNT rings is discussed. In the field emission measurements we found that field emission from a halved ring is better than that from a whole SWNT ring, which contributed to the better emission from two opened ends of the nanotubes of the halved SWNT ring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure of quantum rings is studied in the framework of the effective-mass theory and the two dimensional hard wall approximation. In cases of both the absence and presence of a magnetic field the electron momenta of confined states and the Coulomb energies of two electrons are given as functions of the angular momentum, inner radius, and magnetic-field strength. By comparing with experiments it is found that the width of the real confinement potential is 14 nm, much smaller than the phenomenal width. The Coulomb energy of two electrons is calculated as 11.1 meV. The quantum waveguide transport properties of Aharonov-Bohm (AB) rings are studied complementarily, and it is found that the correspondence of the positions of resonant peaks in AB rings and the momentum of confined states in closed rings is good for thin rings, representing a type of resonant tunneling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fabrication of semiconductor nanostructures such as quantum dots (QDs), quantum rings (QRs) has been considered as the important step for realization of solid state quantum information devices, including QDs single photon emission source, QRs single electron memory unit, etc. To fabricate GaAs quantum rings, we use Molecular Beam Epitaxy (MBE) droplet technique in this report. In this droplet technique, Gallium (Ga) molecular beams are supplied initially without Arsenic (As) ambience, forming droplet-like nano-clusters of Ga atoms on the substrate, then the Arsenic beams are supplied to crystallize the Ga droplets into GaAs crystals. Because the morphologies and dimensions of the GaAs crystal are governed by the interplay between the surface migration of Ga and As adatoms and their crystallization, the shape of the GaAs crystals can be modified into rings, and the size and density can be controlled by varying the growth temperatures and As/Ga flux beam equivalent pressures(BEPs). It has been shown by Atomic force microscope (AFM) measurements that GaAs single rings, concentric double rings and coupled double rings are grown successfully at typical growth temperatures of 200 C to 300 C under As flux (BEP) of about 1.0 x 10(-6) Torr. The diameter of GaAs rings is about 30-50 nm and thickness several nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a magnetophotoluminescence study of single self-assembled semiconductor nanorings which are fabricated by molecular-beam epitaxy combined with AsBr3 in situ etching. Oscillations in the neutral exciton radiative recombination energy and in the emission intensity are observed under an applied magnetic field. Further, we control the period of the oscillations with a gate potential that modifies the exciton confinement. We infer from the experimental results, combined with calculations, that the exciton Aharonov-Bohm effect may account for the observed effects.