6 resultados para Returns to scale

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

90.00% 90.00%

Publicador:

Resumo:

植物功能生态学研究不仅提供了植物生理生态学与生态系统生态学的连接,还为植物种群生活史对策研究提供了材料。Westoby 等 (2002) 提出了利用植物功能性状变量的主导维度来确定和量化植物生活史的生态适应策略。在他们所提出四个主导维度中,叶大小-小枝大小是研究相对较少的一维;其内部各组分的关系、对环境的响应,以及与其它重要维度的关系,目前的理解非常有限。 本研究以贡嘎山不同海拔不同功能群物种为研究对象,采用种间比较和系统发生独立性比较等研究方法,系统研究了植物的功能特征及其相关性在不同生境及不同功能群间的差异,旨在分析不同功能群物种的叶大小-小枝大小的成本和收益。其研究结果将有助于我们理解植物生活史对策的进化,进而理解物种共存和维持物种多样性的机制。主要研究结果如下: 1. 叶大小-小枝大小关系 小枝茎横截面积与单叶面积和总叶面积均呈异速生长关系,即总叶面积和单叶面积的增加比茎横截面积的增加速度快。但是,总叶面积和叶片干重的增加却基本上与小枝茎干重的增加等速。系统发生独立性比较研究的结果与此相一致。表明,在某一给定的茎投入时,至少大叶大枝物种不比小叶小枝物种在支撑叶面积和叶片干重方面具有优势。同时,在某一给定的小枝茎投入时,常绿阔叶物种比落叶阔叶物种支撑更少的叶面积。在茎干重与总叶面积的关系中,落叶复叶物种比落叶单叶物种具有更高的y轴截距,表明复叶物种比单叶物种在展叶面积方面更有效。复叶物种与单叶物种相比,通常具有较大的叶大小和小枝大小。 2. 叶大小-叶数量关系 叶大小与数量间在不同的叶片习性、不同的叶片形态以及不同的生境类型的物种间均存在稳定的负的等速生长关系,且这种关系在系统发生独立性比较时依然成立。然而,在某一给定的出叶强度 (单位小枝的叶数量) 时,常绿阔叶物种比落叶物种具有更小的叶面积。而在给定体积基础上的出叶强度时,落叶复叶物种的叶面积显著大于落叶单叶物种,且复叶物种比单叶物种具有更大的叶大小和更小的出叶强度。但是,叶大小与数量间的关系在不同的海拔间并没有显著的差异。 3. 小枝大小-总叶面积关系 在不同的生活型或不同的生境下,小枝上总叶面积与茎干重和小枝干重均呈正的异速生长关系,且斜率显著小于1.0,表明小枝上总叶面积的增加都不能赶上小枝及茎大小的增加。这种“收益递减”表明随着小枝干重的增加,光截取的收益递减。此外,叶面积比 (总叶面积与小枝干重的比值) 与单叶干重呈显著负相关关系,系统发生独立性比较的结果与此相一致。根据以上结果,可以推测,大叶的物种在质量较好的生境中出现,而群落内部小枝茎的寿命较长的物种可以拥有较大的叶片。 4. 叶片色素浓度-LMA关系 随着海拔的升高,阔叶木本植物和草本植物的叶片色素浓度减少,叶绿素a/b和类胡萝卜素/叶绿素比值以及比叶重 (LMA) 增加。然而,在草本植物中的色素浓度、色素比值和LMA的变化比阔叶木本植物的更明显。同时,LMA与叶片色素浓度呈负相关关系,但是在落叶物种中的LMA对色素浓度的影响比常绿阔叶物种更强烈。总之,草本植物的叶片特征对海拔梯度的变化似乎比木本植物更敏感,LMA对叶片色素的保护作用在落叶物种中比在常绿阔叶物种显得更重要。这些结果表明不同生活型物种可能采取不同的保护机制来降低叶绿体器官的损伤和增加他们的碳获取能力。 Studies on plant functional ecology not only bridge plant eco-physiology and ecosystem functioning, but also enrich plant population biology. As pointed out by Westoby et al (2002), plant life history strategies can be identified and quantified by four leading dimensions of variations in plant functional traits, i.e., seed size/output, leaf mass per area and leaf life span, plant height, and leaf size-twig size. Compared to the other dimensions, the cost/benefit of the leaf size-twig size spectrum has scarcely been analyzed in relation to environmental gradients and life form types, and the adaptive significance of this spectrum is not fully understood. In the present study, the relationships between functional traits of plant twigs are determined for the species with different life forms along an altitudinal gradient of Gongga Mountain with both cross-species analysis and evolutionary divergence analysis. The primary objective of this study is to examine the cost/benefit of leaf size-twig size in plants. The study results are supposed to provide insights into the understanding of the mechanism of species coexistences. The results are shown in the following. 1. The relationship between leaf size and twig size Twig cross-sectional area allometrically scaled with both individual leaf area and total leaf area supported by the twigs. However, the increase in total lamina mass/area was generally proportional to the increase in stem mass. These correlations between trait variations were significant in both interspecies analysis and phylogenetically independent comparison (PIC) analysis, which indicated that thick-twigged/large-leaved species, at least, do not have an advantage in supporting leaf/lamina area and lamina mass for the same twig stem investment than thin-twigged/ small-leaved species. Meanwhile, the evergreen broad-leaved species supported a smaller leaf area for the same twig stem investment in terms of both cross-sectional area and stem mass than the deciduous species. The deciduous compound-leaved species have a higher y-intercept in the scaling relationship of twig stem mass versus total leaf area than the deciduous simple-leaved species, indicating that compound-leaved species were more efficient in displaying leaf area. The compound-leaved species were larger in both leaf size and twig size than their counterpart in the present study. 2. The relationship between leaf size and leaf number Significantly negative and isometric scaling relationships between leaf size and leafing intensity (leaf number per twig mass or volume) were found to be consistently conserved across species independent of leaf habit, leaf form and habitat type. The negative correlations between leaf size and leafing intensity were also observed across correlated evolutionary divergences. However, leaf area was smaller in the evergreen broad-leaved species at a given leafing intensity than in the deciduous species. The deciduous compound-leaved deciduous species were higher in leaf area than deciduous simple-laved species at a given volume-based leafing intensity. Moreover, the compound-leaved deciduous species were larger in leaf size but smaller in leafing intensity than their simple counterparts. No significant difference was found in the scaling relationships between altitudes. 3. The relationship between twig size and total leaf area Leaf area was found to scale positively and allometrically with both stem and twig mass (stem mass plus leaf mass) with slopes significantly smaller than 1.0, independent of life form and habitat type, indicating that the increase in total leaf area fails to keep pace with increasing twig size and stem size. This ‘diminishing returns’ suggests that the benefit of light intercept decreased with increasing twig mass. Moreover, the leaf area ratio (the ratio of total leaf area to stem or twig mass) correlated negatively with individual leaf mass. The results of PIC were consistent with the correlations. According to the results, it is speculated that large-leaved species may be favored when habitat is good and when stem longevity are long within community. 4. The relationship between leaf pigment concentrations and leaf mass per area With increasing altitude, the concentrations of pigments decreased, but the ratios of chlorophyll a/b and carotenoid/chlorophyll, and LMA increased, in both the broad-leaved woody species and herbaceous species groups. However, the changes in the pigment concentrations, ratios and LMA were more profound in the herbaceous species than in the woody species. In addition, pigment concentrations were negatively correlated with LMA in each life form type and in the pooled dataset. However, the LMA effect on leaf pigment concentrations was more profound in the deciduous species than in the evergreen braode-leaved species. In general, herbaceous species seemed more sensitive to the increasing altitude compared to woody species, and LMA seemed to be a more important mechanism for protecting leaf pigments in deciduous species than in evergreen broad-leaved species. These results suggested that the species with different life forms may employ different protective mechanisms to decrease the chloroplast apparatus damage and increase their carbon gain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The local characteristics of the anti-plane shear stress and strain field are determined for a material where the stress increases linearly with strain up to a limit and then softens nonlinearly. Two unloading models are considered such that the unloading path always returns to the origin while the other assumes the unloading modulus to be that of the initial shear modulus. As the applied shear increases, an unloading zone is found to prevail between a zone in which the material softens and another zone in which the material is linear-elastic even though the crack does not propagate. The divisions of these zones are displayed graphically.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oocyte maturation and egg fertilization in both vertebrates and invertebrates are marked by orchestrated cytoplasmic translocation of secretory vesicles known as cortical granules. It is thought that such redistribution of cellular content is critical for asymmetrical cell division during early development, but the mechanism and regulation of the process is poorly understood. Here we report the identification, purification and cDNA cloning of a C-type lectin from oocytes of a freshwater fish species gibel carp (Carassius auratus gibelio). The purified protein has been demonstrated to have lectin activity and to be a Ca2+-dependent C-type lectin by hemagglutination activity assay. Immunocytochemistry revealed that the lectin is associated with cortical granules, gradually translocated to the cell surface during oocyte maturation, and discharged to the egg envelope upon fertilization. Interestingly, the lectin becomes phosphorylated on threonine residues upon induction of exocytosis by fertilization and returns to its original state after morula stage of embryonic development, suggesting that this posttranslational modification may represent a critical molecular switch for early embryonic development. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

个体软件过程(PSP)是由卡内基×梅隆大学软件工程研究所的Humphrey领导开发的.它是一种可用于控制、管理和改进个人工作方式的自我持续改进过程.随着工业界对软件过程改进需求的日益增长,PSP成为了软件组织为达成完全(从宏观到微观)量化过程管理研究中的一个热点课题.软件过程研究表明,高水平的个体软件过程能力是软件项目成功的关键,如何进行有效的个体软件过程能力度量是PSP中的一个核心问题.现有方法不能同时有效处理个体软件过程能力度量中的可变规模收益、多变量输入/输出以及决策者偏好问题.提出了一种综合了数据包络分析(DEA)和层次分析法(AHP)的个体软件过程能力评价方法--PSPADA,介绍了PSPADA的个体软件过程能力评价模型和核心算法(集成决策者偏好和估计规模收益).实验结果显示,PSPADA能够在考虑决策者偏好的同时,有效地进行多指标、规模收益可变的量化评估.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A synthesized photochromic compound-pyrrylfulgide-is prepared as a thin film doped in a polymethylmethacrylate (PMMA) matrix. Under irradiation by UV light, the film converts from the bleached state into a colored state that has a maximum absorption at 635 nm and is thermally stable at room temperature. When the colored state is irradiated by a linearly polarized 650 nm laser, the film returns to the bleached state; photoinduced anisotropy is produced during this process. Application of optical image processing methods using the photoinduced anisotropy of the pyrrylfulgide/PMMA film is described. Examples in non-Fourier optical image processing, such as contrast reversal and image subtraction and summation, as well as in Fourier optical image processing, such as low-pass filtering and edge enhancement, are presented. (c) 2006 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The diffusive transport properties in microscale convection flows are studied by using the direct simulation Monte Carlo method. The effective diffusion coefficient D is computed from the mean square displacements of simulated molecules based on the Einstein diffusion equation D = x2 t /2t. Two typical convection flows, namely, thermal creep convection and Rayleigh– Bénard convection, are investigated. The thermal creep convection in our simulation is in the noncontinuum regime, with the characteristic scale of the vortex varying from 1 to 100 molecular mean free paths. The diffusion is shown to be enhanced only when the vortex scale exceeds a certain critical value, while the diffusion is reduced when the vortex scale is less than the critical value. The reason for phenomenon of diffusion reduction in the noncontinuum regime is that the reduction effect due to solid wall is dominant while the enhancement effect due to convection is negligible. A molecule will lose its memory of macroscopic velocity when it collides with the walls, and thus molecules are hard to diffuse away if they are confined between very close walls. The Rayleigh– Bénard convection in our simulation is in the continuum regime, with the characteristic length of 1000 molecular mean free paths. Under such condition, the effect of solid wall on diffusion is negligible. The diffusion enhancement due to convection is shown to scale as the square root of the Péclet number in the steady convection regime, which is in agreement with previous theoretical and experimental results. In the oscillation convection regime, the diffusion is more strongly enhanced because the molecules can easily advect from one roll to its neighbor due to an oscillation mechanism. © 2010 American Institute of Physics. doi:10.1063/1.3528310