23 resultados para Resource Reallocation

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms that prevent competition (conflict) between the recipient and co-operative actor in co-operative systems remain one of the greatest problems for evolutionary biology. Previous hypotheses suggest that self-restraint, dispersal or spatial con

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. As the sole freshwater subspecies of finless porpoise (Neophocaena phocaenoides), the Yangtze finless porpoise (N. p. asiaeorientalis) lives only in the middle and lower reaches of the Yangtze River and its appended Poyang and Dongting Lakes. As a result of human activity on the river, including over and illegal fishing, pollution, transportation and dam construction, the population of Yangtze finless porpoises has been steadily and rapidly decreasing during the past several decades, which leads the animal to be endangered. Methods. For saving this unique animal from extinction, three corresponding measures, in situ conservation, ex situ conservation, and intensifying breeding research in captivity, were proposed and have been implemented since the 1980s. Results. After successfully rearing the animals in captivity for almost nine years, the first Yangtze finless porpoise was successfully born in captivity on July 5, 2005. The calf is male, with a body length of 69 cm. This is the first freshwater cetacean ever born in captivity. Conclusion. The successful birth of this calf confirms that it is possible to breed the Yangtze finless porpoise in captivity. Furthermore, this will greatly benefit the conservation efforts, and also greatly bolster our on-going efforts to study the reproductive biology of these animals. Recommendation. More studies and efforts are expected to establish a sustainable, captive colony of the Yangtze finless porpoise, which will not only greatly expand our knowledge about the reproduction biology of this animal, but also help to redeem the wild population through a careful yearly 'soft releasing' process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is a typical multiphase flow process for hydrate formation in seeping seafloor sediments. Free gas can not only be present but also take part in formation of hydrate. The volume fraction of free gas in local pore of hydrate stable zone (HSZ) influences the formation of hydrate in seeping seafloor area, and methane flux determines the abundance and resource of hydrate-bearing reservoirs. In this paper, a multiphase flow model including water (dissolved methane and salt)-free gas hydrate has been established to describe this kind of flow-transfer-reaction process where there exists a large scale of free gas migration and transform in seafloor pore. In the order of three different scenarios, the conversions among permeability, capillary pressure, phase saturations and salinity along with the formation of hydrate have been deducted. Furthermore, the influence of four sorts of free gas saturations and three classes of methane fluxes on hydrate formation and the resource has also been analyzed and compared. Based on the rules drawn from the simulation, and combined information gotten from drills in field, the methane hydrate(MH) formation in Shenhu area of South China Sea has been forecasted. It has been speculated that there may breed a moderate methane flux below this seafloor HSZ. If the flux is about 0.5 kg m-2 a-1, then it will go on to evolve about 2700 ka until the hydrate saturation in pore will arrive its peak (about 75%). Approximately 1.47 109 m3 MH has been reckoned in this marine basin finally, is about 13 times over preliminary estimate.