82 resultados para Residential variation statistics
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Spatial population data, obtained through the pixeling method, makes many related researches more convenient. However, the limited methods of precision analysis prevent the spread of spatial distribution methods and cumber the application of the spatial population data. This paper systematically analyzes the different aspects of the spatial population data precision, and re-calculates them with the reformed method, which makes breakthrough for the spread of the pixeling method and provides support and reference for the application of spatial population data. The paper consists of the following parts: (2) characters of the error; (2) origins of the error; (3) advancement on the calculating methods of the spatial population data. In the first place, based on the analysis of the error trait, two aspects of the spatial population data precision are characterized and analyzed: numerical character and spatial distributing character. The later one, placed greater emphasis on in this paper, is depicted in two spatial scales: county and town. It is always essential and meaningful to the research in this paper that spatial distribution is as important as numerical value in analyzing error of the spatial distributed data. The result illustrates that the spatial population data error appears spatially in group, although it is random in the aspect of data statistics, all of that shows there lies spatial systematic error. Secondly, this paper comes to conclude and validate the lineal correlation between the residential land area (from 1:50000 map and taken as real area) and population. Meanwhile, it makes particular analysis on the relationship between the residential land area, which is obtained from the land use map and the population in three different spatial scales: village, town and county, and makes quantitative description of the residential density variation in different topological environment. After that, it analyzes the residential distributing traits and precision. With the consideration of the above researches, it reaches the conclusion that the error of the spatial distributed population is caused by a series of factors, such as the compactness of the residents, loss of the residential land, the population density of the city. Eventually, the paper ameliorates the method of pixeling the population data with the help of the analysis on error characters and causes. It tests 2-class regionalization based on the 1-class regionalization of China, and resorts the residential data from the land use map. In aid of GIS and the comprehensive analysis of various data source, it constructs models in each 2-class district to calculate spatial population data. After all, LinYi Region is selected as the study area. In this area, spatial distributing population is calculated and the precision is analyzed. All it illustrates is that new spatial distributing population has been improved much. The research is fundamental work. It adopts large amounts of data in different types and contains many figures to make convincing and detailed conclusions.
Resumo:
Cowper-Symonds and Johnson-Cook dynamic constitutive relations are used to study the influence of both strain rate effect and temperature variation on the material intrinsic length scale in strain gradient plasticity. The material intrinsic length scale decreases with increasing strain rates, and this length scale increases with temperature.
Resumo:
The theory of the loading/unloading response ratio (LURR) was applied to the Jiashi earthquake sequence which occurred at the beginning of 1997 in Xinjiang, and found that, before the earthquakes with relatively high magnitudes In the sequence, the ratio showed anomalies of high values. That is to say, the LURR theory can be applied to the short-term earthquake prediction in some cases, especially in the early period after a strong earthquake, such as the forecasts for some strong earthquakes in the Jiashi sequence.
Resumo:
Turbulent air flows over developing wind waves in the air-sea boundary layer are numerically simulated without considering wave breaking. Influences of wind waves on air flows are considered using a model of significant wave and surface roughness, with a formula proposed for calculating the surface roughness, k - epsilon model is adopted to simulate turbulent flows. The results of the drag coefficient and turbulence characteristics agree well with the observations.
Resumo:
The ratios of enstrophy and dissipation moments induced by localized vorticity are inferred to be finite. It follows that the scaling exponents for locally averaged dissipation and enstrophy are equal. However, enstrophy and dissipation exponents measured over finite ranges of scales may be different. The cylindrical vortex profile that yields maximal moment ratios is determined. The moment ratios for cylindrical vortices are used to interpret differences in scale dependence of enstrophy and dissipation previously found in numerical simulations.
Resumo:
Under the environment of seawater, durability of concrete materials is one of the chief factors considered in the design of structures. The decrease of durability of structures is induced by the evolution of micro-damage due to the erosion of chlorine and sulfate ions, which is characterized by the reduction of modulus, strength, and toughness of the material. In this paper, the variation of the flexural strength of cement mortar under sulfate erosion is investigated. The results obtained in present work indicate that the erosion time, concentration of sulfate solution, and water-to-cement ratio will significantly affect the flexural strength. Crown Copyright (c) 2008 Published by Elsevier Ltd. All rights reserved.
Resumo:
The application of large-eddy simulation (LES) to turbulent transport processes requires accurate prediction of the Lagrangian statistics of flow fields. However, in most existing SGS models, no explicit consideration is given to Lagrangian statistics. In this paper, we focus on the effects of SGS modeling on Lagrangian statistics in LES ranging from statistics determining single-particle dispersion to those of pair dispersion and multiparticle dispersion. Lagrangian statistics in homogeneous isotropic turbulence are extracted from direct numerical simulation (DNS) and the LES with a spectral eddy-viscosity model. For the case of longtime single-particle dispersion, it is shown that, compared to DNS, LES overpredicts the time scale of the Lagrangian velocity correlation but underpredicts the Lagrangian velocity fluctuation. These two effects tend to cancel one another leading to an accurate prediction of the longtime turbulent dispersion coefficient. Unlike the single-particle dispersion, LES tends to underestimate significantly the rate of relative dispersion of particle pairs and multiple-particles, when initial separation distances are less than the minimum resolved scale due to the lack of subgrid fluctuations. The overprediction of LES on the time scale of the Lagrangian velocity correlation is further confirmed by a theoretical analysis using a turbulence closure theory.
Resumo:
The fit of fracture strength data of brittle materials (Si3N4, SiC, and ZnO) to the Weibull and normal distributions is compared in terms of the Akaike information criterion. For Si3N4, the Weibull distribution fits the data better than the normal distribution, but for ZnO the result is just the opposite. In the case of SiC, the difference is not large enough to make a clear distinction between the two distributions. There is not sufficient evidence to show that the Weibull distribution is always preferred to other distributions, and the uncritical use of the Weibull distribution for strength data is questioned.
Resumo:
The influence of threshold stress on the estimation of the Weibull statistics is discussed in terms of the Akaike information criterion. Numerical simulations show that, if sample data are limited in number and threshold stress is not too large, the two-parameter Weibull distribution is still a preferred choice. For example, the fit of strength data of glass and ceramics to the two- and three-parameter Weibull distributions is compared.
Resumo:
In the present study, analyzed are the variation of added mass for a circular cylinder in the lock-in ( synchronization) range of vortex-induced vibration (VIV) and the relationship between added mass and natural frequency. A theoretical minimum value of the added mass coefficient for a circular cylinder at lock-in is given. Developed are semi-empirical formulas for the added mass of a circular cylinder at lock-in as a function of flow speed and mass ratio. A comparison between experiments and numerical simulations shows that the semi-empirical formulas describing the variation of the added mass for a circular cylinder at lock-in are better than the ideal added mass. In addition, computation models such as the wake oscillator model using the present formulas can predict the amplitude response of a circular cylinder at lock-in more accurately than those using the ideal added mass.
Resumo:
Based on the theory of LURR and its recent development, spatial and temporal variation of Y/Y-c (value of LURR/critical value of LURR) in the Southern California region during the period from 1980 through March, 2001 was studied. According to the previous study on the fault system and stress field in Southern California, we zoned the Southern California region into 11 parts in each of which the stress field is almost uniform. With the time window of one year, time moving step of three months, space window of a circle region with a radius of 100 km and space moving step of 0.25 degree in latitude and longitude direction, the evolution of Y/Y-c were snapshot. The scanning results show that obvious Y/Y-c anomalies occurred before 5/6 of strong earthquakes considered with a magnitude of 6.5 or greater. The critical regions of Y/Y-c are near the epicenters of the strong earthquakes and the Y/Y-c anomalies occur months to years prior to the earthquakes. The tendency of earthquake occurrence in the California region is briefly discussed on the basis of the examination of Y/Y-c.
Resumo:
This paper deals with turbulence behavior inbenthalboundarylayers by means of large eddy simulation (LES). The flow is modeled by moving an infinite plate in an otherwise quiescent water with an oscillatory and a steady velocity components. The oscillatory one aims to simulate wave effect on the flow. A number of large-scale turbulence databases have been established, based on which we have obtained turbulencestatisticsof the boundarylayers, such as Reynolds stress, turbulence intensity, skewness and flatness ofturbulence, and temporal and spatial scales of turbulent bursts, etc. Particular attention is paid to the dependences of those statistics on two nondimensional parameters, namely the Reynolds number and the current-wave velocity ratio defined as the steady current velocity over the oscillatory velocity amplitude. It is found that the Reynolds stress and turbulence intensity profile differently from phase to phase, and exhibit two types of distributions in an oscillatory cycle. One is monotonic occurring during the time when current and wave-induced components are in the same direction, and the other inflectional occurring during the time when current and wave-induced components are in opposite directions. Current component makes an asymmetrical time series of Reynolds stress, as well as turbulence intensity, although the mean velocity series is symmetrical as a sine/cosine function. The skewness and flatness variations suggest that the turbulence distribution is not a normal function but approaches to a normal one with the increasing of Reynolds number and the current-wave velocity ratio as well. As for turbulent bursting, the dimensionless period and the mean area of all bursts per unit bed area tend to increase with Reynolds number and current-wave velocity ratio, rather than being constant as in steady channel flows.
Resumo:
Under the environment of seawater, durability of concrete materials is one of the chief factors considered in the design of structures. The decrease of durability of structures is induced by the evolution of micro-damage due to the erosion of chlorine and sulfate ions, which is characterized by the reduction of modulus, strength, and toughness of the material. In this paper, the variation of the flexural strength of cement mortar under sulfate erosion is investigated. The results obtained in present work indicate that the erosion time, concentration of sulfate solution, and water-to-cement ratio will significantly affect the flexural strength. Crown Copyright (c) 2008 Published by Elsevier Ltd. All rights reserved.