178 resultados para Reservoir rock
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
From the macroscopic point of view, expressions involving reservoir and operational parameters are established for investigating the stability of moving interface in piston- and non-piston-like displacements. In the case of axi-symmetrical piston-like displacement, the stability is related to the moving interface position and water to oil mobility ratio. The capillary effect on the stability of moving interface depends on whether or not the moving interface is already stable and correlates with the wettability of the reservoir rock. In the case of non-piston-like displacement, the stability of the front is governed by both the relative permeability and the mobility ratio.
Resumo:
研究区位于郯庐断裂中段与济阳坳陷的构造结合部,区内走滑构造广泛发育,主要的走滑断裂有7条,分别是郯庐断裂带的东西两支、垦东断层、孤东断层、长堤断层、埕东断层和发育于垦东凸起中部的浅层走滑构造带。走滑构造带与油气富集带有着明显的对应关系。 通过对研究区内二维、三维地震测线和平面构造图的精细解释和分析,分别揭示了各走滑断裂在平面、剖面和三维空间上的构造形态。根据走滑断裂及其伴生构造的平面和剖面上的几何学特征,将研究区内的走滑断裂划分为三种类型:成熟型走滑断裂、隐伏型走滑断裂、不连续型的走滑断裂。 从理论模式研究入手,推导了拉分盆地中盆地的走滑速率与沉降速率之间的关系,证实了走滑速率同盆地的几何形状参数、最大沉降深度和盆地的沉降速率存在着稳定的数值关系。通过对莱州湾地区潍北凹陷基底沉降历史的分析,建立了潍北凹陷沉降速率与郯庐断裂中段走滑速率之间的经验关系式,进而求出郯庐断裂中段新生代右行走滑位移量的大小为40km。 运用2DMove软件,对研究区内四条典型剖面进行构造复原,计算出了各条剖面每个时期的伸展参数,对研究区构造活动强度进行了定量分析,揭示了研究区的构造演化规律。通过运用Ansys软件进行有限元模拟,恢复了晚白垩世晚期-古近纪早期研究区内的构造应力场和应变场,揭示了扭张作用是研究区内走滑断层开始走滑的主要原因。 通过上述分析,结合对究区内近几年勘探开发成功和失败的实例分析,全面探讨了走滑活动对于油气成藏“生”、“储”、“盖”、“圈”、“运”、“保”各因素的影响。
Resumo:
Prediction of Carbonate Reservoir Based on the Elastic Parameter Analysis Zhang Guangzhi (Solid Geophysics) Directed by Professor Liu Hong Abstract With the exploration and development of Puguang Oilfield, oil-gas exploration of carbonate rock in China has shown good prospects. Research on earthquake prediction methods for carbonate reservoir becomes the key of oil and gas exploration. Starting with analysis of geological characteristics of carbonate rock, prestack AVO inversion method, prestack elastic impedance inversion and parameter calculation method and seismic attribute extraction and optimization method were studied based on the analysis of rock physics in this work. First, variation characteristic and law of carbonate rock reservoir parameters were studied based on experimental data of rock physics, log data, analysis assay data, mud logging data and seismic data, so as to lay a foundation for the further reservoir identification and description. Then, the structure, type and propagation law of seismic wave field were analyzed through seismic forward modeling of the reservoir, and contact between information from log and geology data with elastic parameters, such as compressional wave and shear wave velocity and density were established, so as to provide a standard for reservoir identification and hydrocarbon detection using seismic reflection characteristics of the research area. Starting with the general concept of inverse problem, through analysis of Zoeppritz equation, three kinds of pre-stack inversion methods were derived and analyzed in detail, the AVO 3-parameter inversion based on Bayesian theory, the prestack AVO waveform inversion method and the simultaneous inversion method, based on the statistical hypothesis of inversion parameters and observation data and the Gauss distribution assumption of noise. The three methods were validated by model data and real data. Then, the elastic wave impedance inversion method of carbonate reservoir was investigated and the method of elastic parameter extraction from elastic impedance data was put forward. Based on the analysis of conventional methods of seismic attribute extraction and optimization, the time-frequency attributes and the wavelet attributes with time and amplitude feature were presented, and the prestack seismic attribute calculation method which can characterize the reservoir rock and fluid characteristic was presented. And the optimization of seismic attribute using the nonlinear KPCA method was also put forward. A series of seismic prediction technologies for carbonate reservoir were presented based on analysis of rock physics and seismic forward simulation technology. Practical application of these technologies was implemented in A oil field of Southern China and good effect has been achieved. Key words: carbonate rock; reservoir prediction; rock physics, prestack seismic inversion; seismic attribute
Resumo:
The development petroleum geology has made people from studying and studying and predicting in statically and respectively the pool-forming conditions of an area such as oil source bed, reservoir, overlying formation, migration, trap and preservation, etc. to regarding these conditions as well as roles of generation, reservation and accumulation as an integrated dynamic evolution development system to do study .Meanwhile apply various simulating means to try to predict from quantitative angle. Undoubtedly, the solution of these questions will accumulate exploration process, cut down exploration cost and obtain remarkable economic and social benefits. This paper which take sedimentology ,structural geology and petroleum geology as guides and take petroleum system theory as nucleus and carry out study thinking of beginning with static factor and integration of point and face as well as regarding dynamic state factor as factor and apply study methods of integration of geology, Lab research and numerical modeling proceed integrated dissect and systematic analysis to GuNan-SanHeCun depression. Also apply methods of integration of sequence stratigraphy, biostratigraphy, petrostratigraphy and seismic data to found the time-contour stratigraphic framework and reveal time-space distribution of depositional system and meantime clarify oil-source bed, reservoir and overlying distribution regular patterns. Also use basin analysis means to study precisely the depositional history, packed sequences and evolution. Meanwhile analyze systematically and totally the fracture sequence and fault quality and fault feature, study the structural form, activity JiCi and time-space juxtaposion as well as roles of fault in migration and accumulation of oil and gas of different rank and different quality fault. Simultaneously, utilize seismic, log, analysis testing data and reservoir geology theory to do systematic study and prediction to GuNan-SanHeCun reservoir, study the reservoir types macroscopic distribution and major controlling factors, reservoir rock, filler and porosity structural features as well as distribution of reservoir physical property in 3D space and do comprehensive study and prediction to major controlling and influential factors of reservoir. Furthermore, develop deepingly organic geochemistry comprehensive study, emphasis on two overlaps of oil source rock (ESI, ES3) organic geochemistry features, including types, maturity and spatial variations of organic matter to predict their source potential .Also apply biological marks to proceed oil-to-source correlation ,thereby establish bases for distribution of petroleum system. This study recover the oil generation history of oil source rocks, evaluate source and hydrocarbon discharge potential ,infer pool-forming stages and point out the accumulation direction as well as discover the forming relations of mature oil-source rock and oil reservoir and develop research to study dynamic features of petroleum system. Meanwhile use systematic view, integrate every feature and role of pool forming and the evolution history and pool-forming history, thereby lead people from static conditions such as oil source bed, reservoir, overlying formation, migration, trap and preservation to dynamically analyzing pool-forming process. Also divide GuNan-SanHeCun depression into two second petroleum system, firstly propose to divide second petroleum system according to fluid tress, structural axis and larger faults of cutting depression, and divide lower part of petroleum system into five secondary systems. Meanwhile establish layer analysis and quantitative prediction model of petroleum model, and do quantitative prediction to secondary petroleum system.
Resumo:
A test system was developed for measuring the pore pressure in porous media, and a new model was devised for the pore pressure testing in both saturated and unsaturated rock-soil. Laboratory experiments were carried out to determine the pore pressure during water level fluctuation. The variations of transient pore pressure vs. time at different locations of the simulated rock-soil system were acquired and processed, and meanwhile the deformation and failure of the model are observed. The experiment results show that whether the porous media are saturated or not, the transient pore pressure is mainly dependent on the water level fluctuation, and coupled with the variation of the stress field.
Sensitivity Analysis of Dimensionless Parameters for Physical Simulation of Water-Flooding Reservoir
Resumo:
A numerical approach to optimize dimensionless parameters of water-flooding porous media flows is proposed based on the analysis of the sensitivity factor defined as the variation ration of a target function with respect to the variation of dimensionless parameters. A complete set of scaling criteria for water-flooding reservoir of five-spot well pattern case is derived from the 3-D governing equations, involving the gravitational force, the capillary force and the compressibility of water, oil and rock. By using this approach, we have estimated the influences of each dimensionless parameter on experimental results and thus sorted out the dominant ones with larger sensitivity factors ranging from10-4to10-0 .
Resumo:
A set of scaling criteria of a polymer flooding reservoir is derived from the governing equations, which involve gravity and capillary force, compressibility of water, oil, and rock, non-Newtonian behavior of the polymer solution, absorption, dispersion, and diffusion, etc. A numerical approach to quantify the dominance degree of each dimensionless parameter is proposed. With this approach, the sensitivity factor of each dimensionless parameter is evaluated. The results show that in polymer flooding, the order of the sensitivity factor ranges from 10(-5) to 10(0) and the dominant dimensionless parameters are generally the ratio of the oil permeability under the condition of the irreducible water saturation to water permeability under the condition of residual oil saturation, density, and viscosity ratios between water and oil, the reduced initial oleic phase saturation and the shear rate exponent of the polymer solution. It is also revealed that the dominant dimensionless parameters may be different from case to case. The effect of some physical variables, such as oil viscosity, injection rate, and permeability, on the dominance degree of the dimensionless parameters is analyzed and the dominant ones are determined for different cases.
Resumo:
This paper reports a multi-scale study on damage evolution process and rupture of gabbro under uniaxial compression with several experimental techniques, including MTS810 testing machine, white digital speckle correlation method, and acoustic emission technique. In particular, the synchronization of the three experimental systems is realized for the study of relationship of deformation and damage at multiple scales. It is found that there are significant correlation between damage evolution at small and large length scales, and rupture at sample scale, especially it displays critical sensitivity at multiple scales and trans-scale fluctuations.
Resumo:
A series of acoustic emission (AE) experiments of rock failure have been conducted under cyclic load in tri-axial stress tests. To simulate the hypocenter condition the specimens are loaded by the combined action of a constant stress, intended to simulate
Resumo:
This paper studies the stability of jointed rock slopes by using our improved three-dimensional discrete element methods (DEM) and physical modeling. Results show that the DEM can simulate all failure modes of rock slopes with different joint configurations. The stress in each rock block is not homogeneous and blocks rotate in failure development. Failure modes depend on the configuration of joints. Toppling failure is observed for the slope with straight joints and sliding failure is observed for the slope with staged joints. The DEM results are also compared with those of limit equilibrium method (LEM). Without considering the joints in rock masses, the LEM predicts much higher factor of safety than physical modeling and DEM. The failure mode and factor of safety predicted by the DEM are in good agreement with laboratory tests for any jointed rock slope.
Resumo:
A mathematical model for the rain infiltration in the rock-soil slop has been established and solved by using the finite element method. The unsteady water infiltrating process has been simulated to get water content both in the homogeneous and heterogeneous media. The simulated results show that the rock blocks in the rock-soil slop can cause the wetting front moving fast. If the rain intensity is increased, the saturated region will be formed quickly while other conditions are the same. If the rain intensity keeps a constant, it is possible to accelerate the generation of the saturated region by properly increasing the vertical filtration rate of the rock-soil slop. However, if the vertical filtration rate is so far greater than the rain intensity, it will be difficult to form the saturated region in the rock-soil slop. The numerical method was verified by comparing the calculation results with the field test data.
Resumo:
A 3D anisotropic elastoplastic-damage model was presented based on continuum damage mechanics theory. In this model, the tensor decomposition technique is employed. Combined with the plastic yield rule and damage evolution, the stress tensor in incremental format is obtained. The derivate eigenmodes in the proposed model are assumed to be related with the uniaxial behavior of the rock material. Each eigenmode has a corresponding damage variable due to the fact that damage is a function of the magnitude of the eigenstrain. Within an eigenmodes, different damage evolution can be used for tensile and compressive loadings. This model was also developed into finite element code in explicit format, and the code was integrated into the well-known computational environment ABAQUS using the ABAQUS/Explicit Solver. Numerical simulation of an uniaxial compressive test for a rock sample is used to examine the performance of the proposed model, and the progressive failure process of the rock sample is unveiled.
Resumo:
Slip-weakening is one of the characteristics of geological materials under certain loadings. Non-uniform rock structure may exist in the vicinity of the slip surface for a rock slope. Some portion of the slip surface may be penetrated but the other not. For the latter case, the crack or the fault surface will undergo shear deformation before it becomes a successive surface under a certain loading. As the slipped portion advances,slip-weakening occurs over a distance behind the crack tip. In the weakening zone, the shear strength will decrease from its peak value to residual friction level. The stress will redistribute along the surface of crack and in the weakening zone. Thus the changed local stress concentration leads the crack to extend and the ratio of penetration of the slip surface to increase. From the view of large-scale for the whole slip surface, the shear strength will decrease due to the damage of interior rock structure, and the faulted rock behaves as a softening material. Such a kind of mechanism performs in a large number of practical landslides in the zones experienced strong earthquakes. It should be noted that the mechanism mentioned above is different from that of the breakage of structural clay,in which the geological material is regarded as a medium containing structural lumps and structural bands. In this paper, the softening behavior of a faulted rock should be regarded as a comprehensive result of the whole complicated process including slip-weakening, redistribution of stress, extension of crack tip, and the penetration of the slip surface. This process is accompanied by progressive failure and abrupt structural damage. The size of slip-weakening zone is related to the undergoing strain. Once the relative slide is initiated (local or integrated), the effect of slip-weakening will behave in a certain length behind the crack tip until the formation of the whole slip surface.
Resumo:
On the basis of the lattice model of MORA and PLACE, Discrete Element Method, and Molecular Dynamics approach, another kind of numerical model is developed. The model consists of a 2-D set of particles linked by three kinds of interactions and arranged into triangular lattice. After the fracture criterion and rules of changes between linking states are given, the particle positions, velocities and accelerations at every time step are calculated using a finite-difference scheme, and the configuration of particles can be gained step by step. Using this model, realistic fracture simulations of brittle solid (especially under pressure) and simulation of earthquake dynamics are made.