5 resultados para Research Productivity

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chinese Academy of Sciences ; National Science Foundation of China [41071059]; National Key Technology R&D Program of China [2008BAK50B06-02]; National Basic Research Program of China [2010CB950900, 2010CB950704]; Natural Sciences and Engineering Research Council of Canada

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research was conducted on alpine meadow site at Menyuan county, Qinghai Province, People's Republic of China to determine the effects of native, subterranean rodent of Qinghai-Tibet grasslands, the plateau zokors (Myospalax baileyi), on seasonal above-and below-ground plant biomass, plant species diversity and productivity. Both total peaks of above-and below-ground biomass were the greatest (413.600 g/m~2 and 2297.502 g/m~2) in the patch no any plateau zokors colonized by plateau zokors over 10 years in August and October, respectively. Both above-and below-ground biomass were significantly increased in the patches where plateau zokors were removed or the burrow systems were abandoned for five years compared to the patches plateau zokors colonized over 10 years. However, both above-and below-ground biomass in abandoned patches were significantly lower than that in uncolonized patches. Monocotyledonous biomass was reduced greatly, but the non-palatable dicots were significantly increased in colonized patches. The palatable biomass of monocots and dicots were increased in abandoned patches. Total plant species diversity was the greatest in uncolonized patchesand least in abandoned patch. The total net primary production in colonized patches was reduced by 68.98% compared with uncolonized patches. Although the patches were without any plateau zokors disturbance for fives years, the total net primary production just reached 58.69% of the uncolonized patches. The above-ground net primary production in abandoned patches increased 28.74% and the below-ground increased 54.91% compared with the colonized patches. We suggest that plateau zokor-induced changes in plant above- and below-ground biomass and species diversity may lead to further alterations of nutrient cycling and trophic dynamics in this alpine meadow ecosystem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grassland degradation is widespread and severe on the Tibet Plateau. To explore management approaches for sustainable development of degraded and restored ecosystems, we studied the effect of land degradation on species composition, species diversity, and vegetation productivity, and examined the relative influence of various rehabilitation practices (two seeding treatments and a non-seeded natural recovery treatment) on community structure and vegetation productivity in early secondary succession. The results showed: (1) All sedge and grass species of the natural steppe meadow had disappeared from the severely degraded land. The above-ground and root biomass of severely degraded land were only 38 and 14.7%, respectively, of those of the control. So, the original ecosystem has been dramatically altered by land degradation on alpine steppe meadow. (2) Seeding measures may promote above-ground biomass, particularly grass biomass, and ground cover. Except for the grasses seeded, however, other grass and sedge species did not occur after seeding treatments in the sixth year of seeding. Establishment of grasses during natural recovery treatment progressed slowly compared with during seeding treatments. Many annual forbs invaded and established during the 6 years of natural recovery. In addition, there was greater diversity after natural recovery treatment than after seeding treatments. (3) The above-ground biomass after seeding treatment and natural recovery treatment were 114 and 55%, respectively, of that of the control. No significant differences in root biomass occurred among the natural recovery and seeded treatments. Root biomass after rehabilitation treatment was 23-31% that of the control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the alpine region of the Qinghai-Tibetan Plateau four indigenous perennial grass species Bromus inermis (BI), Elymus sibiricus (ES), Elymus nutans (EN) and Agropyron cristatum (AC) were cultivated as three mixtures with different compositions and seeding rates, BI + EN, BI + ES + AC and BI + ES + EN + AC. From 1998 to 2001 there were three different weeding treatments: never weeded (CK); weeded on three occasions in the first year (1-y) and weeded on three occasions in both the first and second year (2-y) and their effect of grass combination and interactions on sward productivity and persistence was measured. Intense competitive interference by weedy annuals reduced dry matter (DM) yield of the swards. Grass combination significantly affected sward DM yields, leaf area index (LAI) and foliar canopy cover and also species composition DM and LAI, and species plant cover. Interaction between weeding treatments and grass combination was significant for sward DM yield, LAI and canopy cover, but not on species composition for DM, LAI or species plant cover. Grass mixture BI + ES + EN + AC gave the highest sward DM yield and LAI for both weeding and non-weeding treatments. Species ES and EN were competitively superior to the others. Annual weedy forbs must be controlled to obtain productive and stable mixtures of perennial grasses, and germination/emergence is the most important time for removal. Weeding three times (late May, late June and mid-July) in the establishment year is enough to maintain the production and persistence of perennial grass mixtures in the following growing seasons. Extra weeding three times in the second growing year makes only a slight improvement in productivity.