15 resultados para Renewable energy resources

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Removal efficiencies on xenobiotics from polluted water in a twin-shaped constructed wetland consisting of a vertical flow chamber with the crop plant Colocasia esculenta L. Schott and a reverse vertical flow one with Ischaemum aristatum var. glaucum Honda, were assessed by chemical analysis and bioassays. After a four-month period of application, removal efficiencies of the applied pesticides parathion and omethoate were 100%, with no detectable parathion and omethoate in the effluent. For the applied herbicides, the decontamination was less efficient with removal efficiencies of 36% and 0% for 4-chloro-2-methyl-phenoxyacetic acid and dicamba, respectively. As shown by toxicity assay with duckweed Lemna minor L., growth retardation may occur if the water treated for herbicide removal is used in irrigation of sensitive cultivars in agriculture or horticulture. In contrast to I. aristatum var. glaucum Honda, the crop C esculenta L. Schott has a high yield in biomass production as a valuable source of renewable energy. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A complete set of match calculation methods for optimum sizing of PV/wind hybrid system is presented. In this method, the more accurate and practical mathematic models for characterizing PV module, wind generator and battery are adopted; combining with hourly measured meteorologic data and load data, the performance of a PV/wind hybrid system is determined on a hourly basis; by fixing the capacity of wind generators, the whole year's LPSP (loss of power supply probability) values of PV/wind hybrid systems with different capacity of PV array and battery bank are calculated, then the trade-off curve between battery bank and PV array capacity is drawn for the given LPSP value; the optimum configuration which can meet the energy demand with the minimum cost can be found by drawing a tangent to the trade-off curve with the slope representing the relationship between cost of PV module and that of the battery. According to this match calculation method, a set of match calculation programs for optimum sizing of PV/wind hybrid systems have been developed. Applying these match calculation programs to an assumed PV/wind hybrid system to be installed at Waglan island of Hong Kong, the optimum configuration and its hourly, daily, monthly and yearly performances are given. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As a kind of waste collected from restaurants, trap grease is a chemically challenging feedstock for biodiesel production for its high free fatty acid (FFA) content. A central composite design was used to evaluate the effect of methanol quantity, acid concentration and reaction time on the synthesis of biodiesel from the trap grease with 50% free fatty acid, while the reaction temperature was selected at 95 degrees C. Using response surface methodology, a quadratic polynomial equation was obtained for ester content by multiple regression analysis. Verification experiments confirmed the validity of the predicted model. To achieve the highest ester content of crude biodiesel (89.67%), the critical values of the three variables were 35.00 (methanol-to-oil molar ratio), 11.27 wt% (catalyst concentration based on trap grease) and 4.59 h (reaction time). The crude biodiesel could be purified by a second distillation to meet the requirement of biodiesel specification of Korea.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As part of Pilot Project of KIP of CAS, a feasibility study of hydrogen production system using biomass residues is conducted. This study is based on a process of oxygen-rich air gasification of biomass in a downdraft gasifier plus CO-shift. The capacity of this system is 6.4 t biomass/d. Applying this system, it is expected that an annual production of 480 billion N m(3) H-2 will be generated for domestic supply in China. The capital cost of the plant used in this study is 1328$/(N m(3)/h) H-2 out, and product supply cost is 0.15$/N m(3) H-2. The cost sensitivity analysis on this system tells that electricity and catalyst cost are the two most important factors to influence hydrogen production cost.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biomass gasification is an important method to obtain renewable hydrogen, However, this technology still stagnates in a laboratory scale because of its high-energy consumption. In order to get maximum hydrogen yield and decrease energy consumption, this study applies a self-heated downdraft gasifier as the reactor and uses char as the catalyst to study the characteristics of hydrogen production from biomass gasification. Air and oxygen/steam are utilized as the gasifying agents. The experimental results indicate that compared to biomass air gasification, biomass oxygen/steam gasification improves hydrogen yield depending on the volume of downdraft gasifier, and also nearly doubles the heating value of fuel gas. The maximum lower heating value of fuel gas reaches 11.11 MJ/ N m(3) for biomass oxygen/steam gasification. Over the ranges of operating conditions examined, the maximum hydrogen yield reaches 45.16 g H-2/kg biomass. For biomass oxygen/steam gasification, the content of H-2 and CO reaches 63.27-72.56%, while the content Of H2 and CO gets to 52.19-63.31% for biomass air gasification. The ratio of H-2/CO for biomass oxygen/steam gasification reaches 0.70-0.90, which is lower than that of biomass air gasification, 1.06-1.27. The experimental and comparison results prove that biomass oxygen/steam gasification in a downdraft gasifier is an effective, relatively low energy consumption technology for hydrogen-rich gas production.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The transitions of E0 ,E0 +A0, and E+ in dilute GaAs(1-x) Nx alloys with x = 0.10% ,0.22% ,0.36% ,and 0.62% are observed by micro-photoluminescence. Resonant Raman scattering results further confirm that they are from the intrinsic emissions in the studied dilute GaAsN alloys rather than some localized exciton emissions in the GaAsN alloys. The results show that the nitrogen-induced E E+ and E0 + A0 transitions in GaAsN alloys intersect at a nitrogen content of about 0.16%. It is demonstrated that a small amount of isoelectronic doping combined with micro-photoluminescence allows direct observation of above band gap transitions that are not usually accessible in photoluminescence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Device-quality a-Si:H films were prepared by glow discharge CVD with pure or H-diluted silane as well as by hot-wire CVD. The hydrogen content was varied from similar to 2 to 15 at. %. The Si-H bond absorption and its light-soaking-induced changes were studied by IR and differential IR absorption spectroscopes. The results indicate that the more stable sample exhibits an increase of the absorption at wave number similar to 2000 cm(-1), and the less stable one exhibits a decrease at similar to 2040 cm(-1) and an increase at similar to 1880 cm(-1).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the accumulation of experimental data, it has been recognized by many that the light-induced metastable change of a-Si:H, Staebler-Wronski effect (SWE), may be related to a structural instability of the whole a-Si:H network. However, direct evidence of such a structural change is still lacking. In the present paper, the efforts of our laboratory in this direction will be reviewed, including the light-induced changes of Si-H bond absorption, low frequency dielectric response, and an apparent photo-dilation effect.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High quality hydrogenated amorphous silicon (a-Si:H) films have been prepared by a simple "uninterrupted growth/annealing" plasma enhanced chemical vapor deposition (PECVD) technique, combined with a subtle boron-compensated doping. These a-Si:H films possess a high photosensitivity over 10(6), and exhibit no degradation in photoconductivity and a low light-induced defect density after prolonged illumination. The central idea is to control the growth conditions adjacent to the critical point of phase transition from amorphous to crystalline state, and yet to locate the Fermi level close to the midgap. Our results show that the improved stability and photosensitivity of a-Si:H films prepared by this method can be mainly attributed to the formation of a more robust network structure and reduction in the precursors density of light-induced metastable defects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel pulsed rapid thermal processing (PRTP) method has been used for realizing the solid-phase crystallization of amorphous silicon films prepared by PECVD. The microstructure and surface morphology of the crystallized films are investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM). The results indicate that this PRTP is a suitable post-crystallization technique for fabricating large-area polycrystalline silicon films with good structural qualities such as large grain size, small lattice microstain and smooth surface morphology on low-cost substrate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

木质纤维素原料种类多、分布广、数量巨大,通过燃料乙醇生产技术、厌氧沼气发酵技术将其转化成乙醇、沼气等二次能源,一定程度上可以缓解化石能源的不断消耗所带来的能源危机,也解决了农林废弃物引起的环境污染问题。其中以木质纤维素原料生产燃料乙醇,还可以避免以淀粉类和糖类原料生产燃料乙醇时带来的“与人争粮”等一系列问题。因此具有重要的经济效益、环境效益和社会效益。 然而,木质纤维素原料结构致密,木质素包裹在纤维素、半纤维素外围,导致其很难被降解利用,必须进行适当的预处理,去除木质素,打破原有的致密结构,利于原料的后续利用。因此,预处理成为木质纤维素原料能源化利用的关键。而目前预处理环节的费用过于昂贵,于是寻找一种高效、低成本的预处理方法是当今研究的热点。 本论文采用组合白腐真菌对木质纤维素原料进行生物预处理研究,与其他物理化学法相比,该法有着专一性较强、反应温和、不造成环境污染、成本低等优势。白腐真菌主要通过分泌木质素降解酶对木质素进行降解,从而破坏原料的致密结构,提高后续利用效率。所以木质素降解酶酶活的高低是影响原料预处理效果的一个关键因素。于是本论文首先通过将白腐真菌进行组合的方式提高木质素降解酶(漆酶,Lac)酶活;接着对组合菌的菌株相互作用机理进行研究,阐明组合菌Lac 酶活提高的原因,为菌株组合提高Lac 酶活这种方法的应用提供理论依据,同时也为后续组合白腐真菌预处理木质纤维素原料提供指导;进一步采用固态发酵和木质素降解酶两种方式对木质纤维素原料进行预处理研究,最大化去除木质素成分,破坏原料的致密结构;最终对预处理后原料的酶解糖化进行初步研究,为原料后续的能源化应用奠定基础。具体研究结果如下: (1) 以实验室保存的三株主要分泌Lac 的白腐真菌为出发菌株,筛选得到一组Lac 酶活明显提高的组合菌55+m-6,其中菌株55 为Trametes trogii sp.,m-6 为Trametes versicolor sp.,组合后Lac 酶活较单菌株分别提高24.13倍和4.07 倍。组合菌的最适产酶条件为pH 6.5、C/N 16:1、Tween 80 添加量为0.01%,在该条件下组合菌的Lac 酶活峰值比未优化时提高4.11倍。 (2) 对组合菌55+m-6 菌株间相互作用机理进行研究,发现菌株之间不存在抑制作用;平板培养时,菌丝交界处Lac 酶活最高并分泌棕色色素;液体培养时,菌株m-6 对组合后Lac 酶活的提高起着更为重要的作用:菌株m-6的菌块、过滤灭菌胞外物以及高温灭菌胞外物均能明显刺激菌株55 的Lac产生;菌株55、m-6 进行组合后,同工酶种类未发生增减,但有三种Lac同工酶浓度有所提高;对菌株胞外物进行薄层层析和质谱分析,结果表明组合前后菌株胞外物中各物质在浓度上存在较大的变化。推测组合菌Lac酶活的明显提高,主要是由于菌株m-6 胞外物中的一些物质能刺激菌株55 分泌大量Lac 进行代谢,且这些刺激物质并非菌株m-6 特有,菌株55自身也可以代谢生成,但是适当的浓度才能刺激Lac 的大量分泌。 (3) 将组合菌55+m-6 用于固态发酵预处理木质纤维素原料,发现其对玉米秆的降解程度最大,在粉碎度40 目、含水率65%的最优处理条件下,处理至第15d,秸秆失重率为41.24%,其中木质素、纤维素、半纤维素均有降解,且Lac 和纤维素酶(CMC)酶活以及还原糖量均达到峰值。 (4) 对玉米秆进行木质素降解酶预处理,发现Lac/1-羟基苯并三唑(HBT)系统对玉米秆木质素的降解效果最好,在最优处理条件时,即HBT 用量0.2%、处理时间1d、Lac 用量50U/g,木质素降解率可达12.60%。预处理后玉米秆的致密结构被破坏,比表面积增大,利于后续酶与纤维素、半纤维素成分的结合。 (5) 对预处理后的玉米秆进行酶解糖化,其中组合菌固态发酵预处理后玉米秆的糖化率比对照高4.33 倍;Lac/HBT 系统预处理后玉米秆的糖化率比对照高2.99%,糖化液中主要含有木糖、葡萄糖两种单糖。 There are many kinds and large quantities of lignocellulosic biomass widely distributed on the earth. They can be converted into secondary energy such as fuel ethanol, biogas, et al., which can relieve the energy crisis caused by consumption of fossil energy resources and solve the problem of environmental pollution caused by agriculture and forestry waste. Meanwhile, the production of fuel ethanol from lignocellulosic biomass can ensure food supply to human kind instead of starch- and sugar-containing raw materials. So the energy conversion of lignocellulosic biomass contributes considerable economic, environment and social benefits. However, lignocellulosic biomass has the compact structure, in which lignin surrounds cellulose and hemicellulose, so it must be pretreated before energy usage and pretreatment is one of the most critical steps in the energy conversion of lignocellulosic biomass. At present, the cost of pretreatment is too expensive, so looking for an efficient and low-cost pre-treatment method is one of recent research hot spots. In this research, combined white rot fungi pretreatment method was used, which had some advantages in low cost, high specificity, mild reacting conditions and friendly environmental effects compared with the other physical and chemical methods. White rot fungi secrete lignin degrading enzymes to degrade the content of lignin and damage the contact structure of lignocellulosic biomass, so the activity of the lignin degrading enzymes is the key factor to the degradation effect of raw materials. Firstly, the combined fungi with high laccase activity were screened; secondly, the interaction mechanism between strains was studied, and the cause of higher laccase activity after strains combination was also preliminary clarified; under the guidance of the mechanism, lignocellulosic biomass was pretreated by the combined fungi; lastly, the enzymatic hydrolysis of pretreated lignocellulosic biomass was also preliminary studied; all of the researches could lay the foundation for the energy application of lignocellulosic biomass. The specific research results were as follows: (1) The combined fungi 55+m-6 with significant higher laccase activity were screened from the three white rot fungi stored in our lab which mainly secreted laccase. Strain 55 and strain m-6 were Trametes trogii sp. and Trametes versicolor sp., respectively. The laccase activity of combined fungi was 24.13 and 4.07-fold than strain 55 and strain m-6, respectively. The optimized condition for laccase production of the combined fungi in liquid medium was pH 6.5, C/N 16:1 and Tween 80 0.01%. In this optimized condition, the laccase activity of combined fungi was 4.11-fold higher comparing with which in non-optimized medium. (2) The interaction mechanism between strain 55 and strain m-6 was further studied, and no inhibition effect was observed. Brown pigment was secreted on the junction of the two strains on the plate, where the highest laccase activity was detected. Strain m-6 was much important to boost laccase activity of combined fungi in liquid medium, and strain 55 was stimulated by fungal plug, filter sterilized extracellular substances and high temperature sterilized extracellular substances of strain m-6 to produce laccase. The types of laccase isozymes did not change after combining strain 55 and strain m-6, but the concentrations of three types increased. Mass Spectrometry and TLC analysis of extracellular substances of each strain showed that concentration of some substances considerably changed after strains were combined. It was supposed that the cause of higher laccase activity of combined fungi was mainly due to some extracellular substances of strain m-6 with the appropriate concentration which stimulated laccase secretion of strain 55 and generated not only by strain m-6 but also by strain 55. (3) Combined fungi 55+m-6 were used to lignocellulosic biomass pretreatment with the type of solid-state fermentation. The highest degree of degradation of corn straw was obtained, including the rate of weight loss was 41.24% and the lignin, cellulose and hemicellulose were degraded partially under the optimized condition of 40 mesh, 65% water content on 15th day. Laccase, CMCase activities and content of reducing sugar reached the maximum value on that day. (4) Lignin degrading enzymes from combined fungi 55+m-6 were used for corn straw pretreatment. The most remarkable degradation of lignin in corn straw with Lac/1-hydroxybenzotriazole (HBT) system was observed, and the 12.60% lignin degradation was obtained under the optimized condition of 0.2% HBT, 50 U/g laccase for 1 d. After pretreated by Lac/HBT, the tight structure of corn straw was demolished and specific surface area increased, which had advantages for accessible of enzyme to cellulose and hemicellulose. (5) The corn straws pretreated by combined fungi 55+m-6 with the type of solid-state fermentation and Lac/HBT were used for enzymatic hydrolysis, and the saccharification rates of each pretreatment type were 4.33 times and 2.99% higher than CK, respectively. The enzymatic hydrolysis liquid of corn straw pretreated by Lac/HBT mainly contained xylose and glucose.