78 resultados para Removal Efficiency
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Coagulation/flocculation process was applied in the polishing treatment of molasses wastewater on a bench-scale. Important operating variables, including coagulant type and dosage, solution pH, rapid mixing conditions as well as the type and dosage of polyeletrolytes were investigated based on the maximum removal efficiencies of chemical oxygen demand (COD) and color, residual turbidity and settling characteristics of flocs. HPSEC was utilized to evaluate the removal of molecular weight fractions of melanoidins-dominated organic compounds. Experimental results indicate that ferric chloride was the most effective among the conventional coagulants, achieving 89% COD and 98% color eliminations; while aluminum sulfate was the least effective, giving COD and color reductions of 66% and 86%, respectively. In addition to metal cations, counter-ions exert significant influence on the coagulation performance since Cl--based metal salts attained better removal efficiency than SO42--based ones at the optimal coagulant dosages. Coagulation of molasses effluent is a highly pH-dependent process, with better removal efficiency achieved at lower pH levels. Rapid mixing intensity, rather than rapid mixing time, has relatively strong influence on the settling characteristics of flocs formed. Lowering mixing intensity resulted in increasing settling rate but the accumulation of floating flocs. When used as coagulant aids, synthetic polyelectrolytes showed little effects on the improvement in organic removal. On the other hand, cationic polyacrylamide was observed to substantially enhance the settleability of flocs as compared to anionic polyacrylamide. The effects of rapid mixing conditions and polymer flocculants on the coagulation performance were discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Phthalic acid esters (PAEs) have become widely diffused in the environment via the manufacturing process. Numerous experiments have shown that the bioaccumulation of PAEs occurred in the aquatic and terrestrial food chain; meanwhile, it was found that some of PAEs were considered as potential carcinogens, teratogens and mutagens. In this research, two vertical/reverse-vertical flow constructed wetland systems were set up to study its removal efficiency of dibutyl, phthalate (DBP) pollution. The results showed that the constructed wetland system could remove DBP effectively, and the removal rates reached nearly 100%. Substrate microorganism and enzymatic activities probably played key roles during DBP removal, and the removal of DBP probably mainly took place in the upper layer of chamber A in the constructed wetland systems. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
In order to investigate the effects of microorganisms and their urease activities in macrophytic root zones on pollutant removal, four small-scale plots (SSPs) of vertical/reverse-vertical flow wetlands were set up to determine: a) the relationship between the abundance of microorganisms in the root zones and water purification efficiency; and b) the relationship between urease activities in the root zones and pollutant removal in a constructed wetland system. Total numbers of the microbial population (bacteria, fungi, and actinomyces) along with urease activities in the macrophytic root zones were determined. In addition, the relationships between microbial populations and urease activities as well as the wastewater purification efficiencies of total phosphorus (TP), total Kjeldahl nitrogen (TKN), biochemical oxygen demand in 5 days (BOD5), and chemical oxygen demand (COD) were also analyzed. The results showed that there was a highly significant positive correlation (r = 0.9772, P < 0.01) between the number of bacteria in the root zones and BOD5 removal efficiency and a significant negative correlation (r = -0.9092, P < 0.05) between the number of fungi and the removal efficiency of TKN. Meanwhile, there was a significant positive correlation (r = 0.8830, P < 0.05) between urease activities in the root zones and the removal efficiency of TKN. Thus, during wastewater treatment in a constructed wetland system, microorganism and urease activities in the root zones were very important factors.
Resumo:
Previous attempts to remove the brown tide organism, Aureococcus anophagefferens, through flocculation with clays have been unsuccessful, in spite of adopting concentrations and dispersal protocols that yielded excellent cell removal efficiency (RE>90%) with other species, so a study was planned to improve cell removal. Four modifications in clay preparation and dispersal were explored: 1) varying the salinity of the clay suspension; 2) mixing of the clay-cell suspension after clay addition; 3) varying of concentration of the initial clay stock; 4) pulsed loading of the clay slurry. The effect of salinity was dependent on the clay mineral type: phosphatic clay (IMC-P2) had a higher RE than kaolinite (H-DP) when seawater was used to disperse the clay, but H-DP removed cells more efficiently when suspended in distilled water prior to application. Mixing after dispersal approximately doubled RE for both clays compared to when the slurry was layered over the culture surface. Lowering the concentration of clay stock and pulsing the clay loading increased RE, regardless of mineral type. However, this increase was more apparent for clays dispersed in seawater than in distilled water. In general, application procedures that decrease the rate of self-aggregation among the clay particles and increase the collision frequency between clay particles and A. anophagefferens achieve higher cell removal efficiency. These empirical studies demonstrated that clays might be an important control option for the brown tide organism, given the proper attention to preparation, dispersal methods, environmental impacts, and the hydrodynamic properties of the system being treated. Implications for the treatment of brown tides in the field are discussed.
Resumo:
Plasma-arc technology was developed to dispose of chemical wastes from a chemical plant by the Institute of Mechanics, Chinese Academy of Sciences (CAS-IMECH). A pilot plant system with this technology was constructed to destroy two types of chemical wastes. The system included shredding, mixing, and feeding subsystems, a plasma-arc reactor of 150 kW, an off-gas burning subsystem, and a scrubbing subsystem. The additives (CaO, SiO2, and Fe) were added into the reactor to form vitrified slag and capture the hazardous elements. The molten slag was quickly quenched to form an amorphous glassy structure. A direct current (DC) experimental facility of 30kW with plasma-arc technology was also set up to study the pyrolysis process in the laboratory, and the experimental results showed the cooling speed is the most important factor for good vitrified structure of the slag. According to previous tests, the destruction and removal efficiency (DRE) for these chemical wastes was more than 99.999%, and the polychlorinated biphenyls (PCBs) concentration in the solid residues was in the range of 1.28 to 12.9mg/kg, which is far below the Chinese national emission limit for the hazardous wastes. A simplified electromagneto model for numerical simulation was developed to predict the temperature and velocity fields. This model can make satisfactory maximum temperature and velocity distributions in the arc region, as well as the results by the magneto hydrodynamic approach.
Resumo:
本文采用实验方法,在一个流化床反应器中研究160~750℃下水蒸气的存在对HCl脱除效率(RE)的影响.实验结果表明:在低温区,水蒸气对RE的影响不明显;380℃时水蒸气的存在抑制反应进行;580℃和750℃时,脱除效率先下降,当水蒸气含量达到15%时,又呈现上升趋势.对于水蒸气含量为5%、10%和15%情况下,580℃的脱氯效率最高.最后通过对暴露的反应物表面积和HCl气体穿越产物层扩散过程的分析解释实验得到的规律.
Resumo:
In this study, optimization of operational conditions of a submerged membrane bioreactor treating municipal waste-water was studied. Mixed liquid suspended solid (MLSS), membrane flux (J(v)), aeration (Q), ratio of pumping, time to break time (t(p)/t(b)), and ratio of up flow area to down flow area (A Ad) were chosen as the easily manipulable parameters to study their effects on removal efficiency and membrane fouling. Totally, 16 different runs were designed to compare and select the best combination of the 5 parameters. The results showed that the optimal operational conditions were MLSS = 7g(.)L(-1), J(v) = 10L(.)m(-2.)h(-1), Q = 6 m(3.)h(-1), t(p)/t(b)= 4 min/1 min, and A(r)/A(d) = 1.7 m(2)/m(2). Under such conditions, the SMBR could achieve a double win of high removal efficiency and low membrane fouling.
Resumo:
In this work, the photodegradation of the carcinogenic pollutant 2-naphthol in aqueous solution containing Aldrich humic acid (HA) and ferric ions (Fe(III)) under 125 W and 250 W high pressure mercury lamp (HPML, lambda >= 365 nm) irradiation was investigated. The photooxidation efficiencies were dependent on the pH values, light intensities and Fe(III)/HA concentration in the water, with higher efficiency at pHs 3-4, and 50 mu mol l(-1) Fe(III) with 20 mg l(-1) HA under 250 W HPML. The initial rate of photooxidation increases with increasing, the initial concentration of 2-naphthol from 10 mu mol l(-1) to 100 mu mol l(-1), while do not change at 50 and 100 mu mol l(-1). However, higher removal efficiency of 2-naphthol is achieved at its lower initial concentration of 10 mu mol l(-1), and initial rate of photooxidation is 0.193 mu mol l(-1) min(-1). Dissolved oxygen (DO) plays an important role in the system containing Fe(III)-HA complexes in which Fenton and photo-Fenton reactions were enhanced in the environment. Hydroxyl radicals produced in HA solution with or without ferric ions were determined by using benzene as free radical scavenger and phenol as scavenging products proportional to hydroxyl radicals. By using UV-Vis and excited fluorescence spectrum techniques, the main photooxidation products, which have higher absorption in the region of 240-340 nm, were found, and the mechanisms for the oxidative degradation is proposed.
Resumo:
Composting is being widely employed in the treatment of petroleum waste. The purpose of this study was to find the optimum control parameters for petroleum waste in-vessel composting. Various physical and chemical parameters were monitored to evaluate their influence on the microbial communities present in composting. The CO2 evolution and the number of microorganisms were measured as the activity of composting. The results demonstrated that the optimum temperature, pH and moisture content were 56.5 - 59.5 degreesC, 7.0 - 8.5 and 55 % - 60%, respectively. Under the optimum conditions, the removal efficiency of petroleum hydrocarbon reached 83.29% after 30 days composting.
Resumo:
钻井废水是油气井开采钻探过程中产生的废水,钻井废水成分复杂,有机物浓度高、色度高、悬浮物浓度高,水质变化大,排放点分散,不经处理排放会污染环境,破坏生态。随着石油工业的不断发展和国家环保法律法规的日益严格,钻井废水的治理也越来越受到重视。如何采用经济有效的方法处理废弃钻井液,对油气井开采业的可持续发展具有重要意义。本论文以遂宁磨153 井的钻井废水为主要研究对象,在对废水进行絮凝沉降预处理和生物法处理探索的基础上,针对钻井废水可生化性差的特点,采用水解酸化和Fenton 试剂改善钻井废水的可生化性,对反应过程进行了比较详细的考察,对可生化性改善的机理进行了探索。主要研究结论如下:1 用PFS 和PAC 配制的混合混凝剂对钻井废水COD 的去除效果比较显著,在最佳条件下COD 的去除率可达75%,且絮体沉降速度较快,出水pH 保持中性;2 水解酸化法处理钻井废水可显著改善废水的可生化性。经48 小时水解酸化处理,钻井废水的理论BOD5可提高约22 倍,表观BOD5/COD值由0.004 提高到0.034。用接触氧化反应器处理经水解酸化处理后的废水,处理效果比较稳定,COD平均去除率达35.5%;3 研究了Fenton反应中各影响因子对废水COD去除率、BOD5/COD的影响并分析其作用机制,确定了最佳条件:初始pH为4.0,H2O2/Fe2+(摩尔浓度比)为20,H2O2/COD(质量浓度比)为1,反应时间为2 个小时。此条件下,废水的COD去除率约为40%,BOD5/COD值从0.002~0.003 提高至0.15~0.2,可生化性得到很大提高。本论文的主要创新点在于:1 以成分复杂、水质变化大的气井钻井废水为研究对象,从理论BOD 和表观BOD 两方面对水解酸化过程中废水可生化性的变化进行了分析;2 对Fenton 试剂改善钻井废水可生化性的过程、主要影响因素进行了比较详细的考察。本论文的研究成果,可为生物法处理钻井废水的深入研究提供理论依据。Drilling wastewater is produced in the process of oil-gas well drilling,because of its complicated composition, high concentrate of organic compound andsuspended solid, high chroma, levity of water quality and decentralization ofdischarge point, it pollutes environment seriously if discharged without treatment.With the development of petroleum industry and the issuing of more strict laws forenvironmental protection, it has been paid more and more attention on drillingwastewater treatment. It is of great importance for the sustainable development ofoil-gas well drilling to treat drilling wastewater by economical and effective methods.In this paper, drilling wastewater of Mo No.153 well in Suining was studied asthe main object. On the basis of research on pre-treatment with flocculant andbiological treatment, and according to the character of poor biodegradability, thedrilling wastewater was treated by hydrolytic acidification and Fenton’s reagent toimprove its biodegradability. The process and mechanism of biodegradabilitychanging were investigated. The primary conclusions are:1 It is effective to treat drilling wastewater with mixing PFS and PAC asflocculant. The removal rates of COD came up to 75% under optimal conditions, thesedimentation rate of flocculation is rapid, and the pH value of treated water remainedneutral;2 The biodegradability of drilling wastewater was highly improved afterhydrolytic acidification process. The theoretic BOD5 of drilling wastewater increasedby 22 times and its detected BOD5/COD ratio increased from 0.004 to 0.034 afterhydrolytic acidification for 48 hours. The wastewater after hydrolytic acidificationwas treated by biological contact oxidation reactor. Stable treatment performance was achieved, and the average removal rates of COD came up to 35.5%;3 The effects of various affection factors on the removal efficiency of COD andBOD5/COD radio in treating drilling wastewater by Fenton’s reagent wereinvestigated and the mechanism was analyzed. The optimal conditions were: initialpH of solution was 4.0, the molar ratio of H2O2 and Fe2+ was 20, the concentrationratio of H2O2 and COD was 1 and the reaction time was 120 min. Under the aboveconditions, the removal efficiency was about 40% and the ratio of BOD5 and CODincreased from 0.002 ¡« 0.003 to 0.15 ¡« 0.2. The biodegradability of drillingwastewater was greatly improved.The innovations of this thesis are:1 The drilling wastewater was taken as the research object which hascomplicated composition and variational water quality, and the changes ofbiodegradability were analyzed from theoretic BOD and detected BOD aspects duringhydrolytic acidification process;2 The biodegradability changing process and primary affection factors of drillingwastewater treating by Fenton’s reagent were investigated.The results of this study could provide theoretic foundation for further researchon biological treatment of drilling wastewater.
Resumo:
本文介绍了从厌氧间歇膨胀光合反应器内的活性污泥中分离并鉴定的泥生绿菌(Chlorobium limicola Nadson)S1,它属严格厌氧光能自养型细菌,在有硫化物和少量碳酸氢盐存在下,有广泛利用有机物的能力,它的最适生长温度为28-30℃,最适生长PH为6.5-7.0,且含有氢化酶。因此,它能与甲烷发酵菌共存而共同作用,达到废水净化之目的。通过光照(2#反应器)和黑暗(1#反应器)对比实验,表明了在光照条件下即有泥生绿菌S1存在下,反应系统能更好地降低CODcr、BOD5 和提高CH4 含量,在四个负荷段的运行中,2#反应器在后三个负荷段的甲烷含量能稳定在91.6%而1#反应器为87%,2#反应器的二氧化碳含量为4.5%而1#反应器为8.8%,于28.35g/l.d的负荷下,2#反应器CODcr去除率达83.4%,BOD去除率达74.53%,分别较1#反应器高10.8%,6.4%。COD去除率提高了14%,BOD去除率提高了9.3%。本试验的试验条件为:白天自然光照,晚上电源光照,光照强度为1000-2500lux,通过连续动态运转,并以恒定的流速将废液注入反应器中,进水PH控制在6.5-7.2,反应器厌氧,恒温室温度控制在30±1℃。为使整个试验中同一水质条件下进行,进水采用化学合成培养基。This paper reports a Chlorobium Liwicola S1's isolation and identification. It is a strictly anaerobic and photosynthetic autotrophic bacterium. Along with sulfidedepondent CO2 assiwilaton,a few simple organic compounds can be photoassimilated. Acetate is most effectively used. Its best conditons of growth are 28-30℃,PH 6.5-7.0, and it contains hydrogenase. So it can live with methanefermentative bacteria in order to treat wastewater. At the same time, the treatment of wastwater using Chlorobium Limicola S1 with methane-fermontative bacteria under dark anaerobic and light anaerobic conditions is studied. In contrast with 1# reactor-darken, 2# reactor-illuminated can lossen wastewater's CODcr, BOD5 and on hance CH4 content better. In the test, 2# reactor's CH4 content is stable at 91.6%, but 1# reactor's is 87%. The CO2 content of 2# reactor is 4.5%, but 1# reactor's is 8.8%. When the load of teatment is 28.35g/l.d, the COD removal effficiency is 83.4% and the BOD removal efficiency is 74.53% in 2# reactor. They are separately 10.8%, 6.4% higher than 1# reactor's.
Resumo:
造纸行业是造成我国水环境有机污染物的重要污染源之一,其水污染的特点是小厂多、草浆多、工艺落后、污染扩散面广、造成废 水排放量大,每年排放的废水量约39亿立方米,占全国工业废水排放量的1/6,其中有机污染物(以BOD5计)160万吨左右,约占全 国工业废水中有机污染物总量的1/4。尤以占全国制浆造纸行业90%以上的碱法草浆造纸厂的蒸煮黑液量大面广,除含有机物外,还 含有木质素、残碱、硫化物、氯化物等污染物,属于PH值高、色度深、难于治理的高浓度有机废水,对水体污染特别严重,各地要 求治理呼声很高,急待研究并尽快找出各种有效的治理途径。对于碱法草浆蒸煮,黑液高浓度废水的治理,有各种方法,根据国内 的研究进展和我们已有试验工作表明,最经济有效,具有实用价值,在生产上可获得成功是厌氧处理法。近10多年来,国外关于高 效厌氧处理技术研究进展迅速,并出现了多种多样的工艺设备,如高效厌氧生物反应器,并在实用化方面取得了很大成绩,建立了 生产性装置,达到了高负荷运行,效果良好。本试验是根据我们已有研究基础,针对我国国情,对小型制浆造纸厂水污染防治除了 开发碱回收及各种综合利用技术外,要特别加强废水(废液)实用技术研究的指导思想,本试验采用改进型的上流式厌氧污泥床反应 器,设计了两种试验方案,通过试验结果如下。1. 试验方案I—碱法草浆黑液酸化和厌氧发酵I号UASB反应器动态模型试验结果表 明:(1). 采用中温35℃±1℃高效厌氧反应器USAB内装有填料(陶粒)和三相分离器,具有保持高浓度生物量和防止污泥流失的特点 ,污泥浓度Vs 可达30%以上,因而具有高效、节能、产能、滞留期短的优点,当进水CODcr在7500-10000mg/l,HRT由7天缩短到3天 ,有机容积负荷在1.22gCODcr/l·d-3.43gCODcr/l·d时,CODcr平均去除率可达55%-45.5%,最高CODcr去除率可达60.2-63.5%, BOD5去除率可达75.9-83.2%,沼气容积产气率可达0.29-0.67l/l·d,每克CODcr转化为沼气产率达0.39-0.48l/gCODcr·d,CH4含量 65.8-75.5%。厌氧发酵出水再用化学法进行后处理脱除难降解的木质素,CODcr总去除率达80%以上。(2). 动态试验结果表明:采 用酸化—厌氧发酵处理黑液工艺合理,技术路线可行。2. 试验方案II—黑液用化学法(Hcl)去除木质素进行厌氧发酵,II号UASB反 应器动态模型试验结果表明:(1). 采用中温35℃±1℃高效厌氧反应器UASB(内有软填料),当进水CODcr7000-13000mg/l左右,HRT 由6天缩短到1天,有机负荷由0.98gCODcr/l·d增加到11gCODcr/l·d时,COD平均去除率均可稳定在70-77%,BOD5去除率为87.3- 93.1%,沼气容积产气率0.21-2.6l/l·d,每克CODcr转化为沼气产率为0.39-0.48l/gCODcr·d,高的可达0.53l/gCODcr·d,转化 率较高,CH4含量63-70%。(2). 试验证明碱法草浆黑液物化预处理—厌氧发酵处理的技术路线也是可行的,工艺合理、效果较好。 在有条件的工厂可采用。3.厌氧发酵阶段几大类群微生物计数表明:(1). 当发酵工艺和运行处于相对稳定状态时,微生物群体的 组成也达到相对的稳定,各类微生物之间保持动态平衡关系。当产乙酸菌的数量为107-108个/ml时,产甲烷菌的数量为105-106 个/ml,当产乙酸菌数量为106-107个/ml时,产甲烷菌的数量为103-105个/ml。(2).稳态运行条件下,黑液预处理为甲烷发酵创造 了有利的生态环境,获得了较好的处理效果和较高的COD转化为沼气的产率0.39-0.48l/g·CODcr·d,反应器中形成较为稳定而数 量较下水污泥中高1-2个数量级的厌氧发酵微生物区系组成。这一结果为黑液厌氧发酵提供了微生物理论依据。Paper industry is one of the important pollution source of water environment in our country. Its character of water pollution is many small factories, much grass pulp, disadvantageous technique, large preading area of pullution. Its effluent makes up 1/6 of whole country's industry wastwater. Its organic pollutant accounts 1/4 of whole country's. Alkaline grass paper pulp effluent with pollutants such as ligoin, remaining alkali sulfide, chloride besides organic material, is a kind of high concentrate organic wastewater which has high PH walug, dark colour and is difficult in treatment. There is urgent require to find ways to treat the wastewater. There are different ways to treat alkaline paper grass pulp effluent. According to the research advances and our experiment work, the most economical and useful way is anaerobic degradation which was advanced quick in last ten years. In the control of waste water of small pulp paper mill, the study of wastewater utilization technology should be emphasized, besides alkaline retrieving and different kinds of comprehensive utilization technology. Our experiment used modified UASB(Upflow Anaerobic Sludge Blanket Reactor). Two kinds of plan were disgned. The results are lined below. 1. The first experiment plant-aciding black pulp effluent and methanogenic digestion. The dynamic model experiment results of I-UASB reactor showed: (1)The mesophilic(35℃±1℃)high effect UASB reactor having haydite and threee state seperation in it had the character of keeping high bioimass concentration and preventing losss of sludge. It had advantages of high effect, energe saving, energe prodcing and short HRT(Hydroulic retention time). When the influent COD was 7500-10000mg, HRT was shortened from 7 days to 3days, organic loading rate was 1.22g-3.43COD/l· d, the average COD removal efficiency was 55%-45%. The highest COD efficiency was 60.2-63.5%, BOD removal of 75.9 -83.4% was achieved. Biogass production rate were up to 0.29-0.67l/l·d. Biogass converted efficiency from every gram of COD could reach 0.39-0.48l/gCOD·d. Methane content was 65.0-75.5%. Chemical method was used to deplate lignin in anaerobic digestion effluent. Total COD removal efficiency could be more than 80%. (2)Using aciding annaerobic digestion to treat the black effluent was reseanable in technique and technology. 2. The second experiment plan-anaerobic digestion was used after the chemical method was used to deplate lignin in the black effluent. The result of dynamic experiment of II-UASB reactor showed: (1)High effect mesophilic (35℃±1℃)UASB reactor having soft slaffing in was used. When influent COD was about 7000-13000mg/l, HRT was shortened from 6 days to 1 day and organic loading rate was increased from 0.90 to 11g COD /l·d, average COD removal efficiency remained stable on 70-77%. BOD, removal efficiency was between 87.3-93.1%. Biogass production rate was 0.2-2.6l/l ·d .Biogass converted efficiency from a gram of COD was 0.39-0.481/gCOD·d with the high value of 0.53l/gCOD·d. Methane content was 63-70%. (2)The way that using physical, chemical Pre-treatment-anaerobic digestion to treat alkaline black effluent is feasible and can be used in some factories when the condition exists. 3. Counting of several class of microoganisms in anaerobic digestion stage showed: (1)As the disgestion was in stable motion, the compositon of microorganic colony could get relative stable. Dynamic balance was remaining among different kinds of microorganism such as methanogenic bacteria, Acidogenic bacteria, sulfate reducing bacteria, and heterotrophic bacteria. (2)Under stable motion, the pre-treatment of black effluent produced favourable eco-enviroment for methanegenic digestion. Good treatment effect and high biogass convertent efficiency from COD(0.39-0.48l/g·COD· d)were gotten. Some stable and high quantity(10-100times more than sewage sludge)microorganism colony were formed in the reactor. This result provided theoretical basis for anaerobic digestion of black effluent.
Resumo:
畜禽废水是农村水环境污染的主要来源之一,其处理的难点在于脱氮。传统生物脱氮法具有能耗高、需大量外加碳源等缺点,开发低成本、高效率的新型生物脱氮技术具有重要意义。 本研究将短程硝化反硝化和厌氧氨氧化两种脱氮新技术结合,让前者为后者创造去除可降解COD、降低总氮负荷、调整pH、调整氨氮和亚硝酸盐氮浓度比例等进水条件,而后者可在无需外加碳源的条件下进一步脱氮,二者结合可成为高氨氮、低C/N废水脱氮的新途径。 试验以低碳氮比猪场废水为研究对象,首先进行了短程硝化反硝化预处理研究,同时启动并运行调控厌氧氨氧化反应器,最后以经过短程硝化反硝化预处理的猪场废水为进水,进行厌氧氨氧化脱氮考察。实验表明:(1)短程硝化反硝化作为厌氧氨氧化的预处理工序是可行的。猪场废水通过短程硝化反硝化,可以达到基本去除可生化COD、部分脱氮、控制出水氨氮和亚硝酸盐氮浓度之比在1︰1左右、pH在7.5~8.0的目的, COD和总氮平均去除率分别为64.3%、49.1%,出水可达到厌氧氨氧化反应的进水要求。(2)采用模拟废水启动厌氧氨氧化反应器,经过5个月左右的运行调控,反应器启动成功并稳定运行,最高总氮去除率为87.1%,总氮容积去除率最高达到0.14kg/m3.d;整个稳定阶段,氨氮、亚硝酸盐氮、硝酸盐氮的变化量之比为1︰1.21︰0.33。(3)经过短程硝化反硝化预处理的猪场废水厌氧氨氧化脱氮效果稳定,氨氮、亚硝酸盐氮、总氮、COD的平均去除率分别为93.0%、99.4%、84.6%、18.1%,处理效果与模拟废水处理系统相比无明显变化。(4)经过短程硝化反硝化预处理后,猪场废水中残留有机物成分在厌氧氨氧化反应过程中无显著变化,主要为酯类和烷烃类物质;残留有机物对厌氧氨氧化效果无明显影响。(5)采用PCR技术进行特殊功能菌种检测,结果表明模拟废水处理系统和猪场废水处理系统的菌群中均含有厌氧氨氧化菌和好氧硝化菌;通过blast比对,厌氧氨氧化菌扩增序列与未培养的Planctomycetales菌和Candidatus Brocadia fulgida菌16S rRNA部分序列相似性分别为95%、90%。(6)MPN法菌种计数结果显示,模拟废水处理系统和猪场废水处理系统的菌群中均含有硝化细菌、亚硝化细菌和少量反硝化菌,实验条件下的微生物系统是一个厌氧氨氧化菌与好氧硝化菌、反硝化菌共存的系统。 Poultry wastewater is one of the main source of water pollution in rural areas,and nitrogen removal is the most difficult part in treating poultry wastewater. There are some disadvantages in traditional nitrogen removal, such as high energy consumption and more additional organic carbon. It is important to develop ecolomical and efficient technologyies. Shortcut nitricfication/denitrification, as a pretreatment process, was combined with Anammox in this research, so that part of total nitrogen and most degradable COD could be removed by the former, and further nitrogen removal could be implemented by the latter. The combination of the two technologies was a new approach to treat wastewater with high ammonium and low C/N. Piggery wastewater with low C/N was treated in lab-scale experiment. Firstly, shortcut nitrification/denitrification was investigated, and Anammox reactor was started up successfully at the same time. Then piggery wastewater after pretreatment was treated by Anammox. The results showed :(1) It was feasible to take nitrification/denitrification as the pretreatment process of Anammox. By using this process, part of total nitrogen and COD were removed, the ratio of ammonium and nitrite reached around 1︰1 and the pH was about 7.8, which were favorable for Anammox. The average removal percentage of COD and total nitrogen were about 64.3% and 49.1%, respectively. (2) Simulated wastewater was used to start up Anammox reactor. The reactor was started up successfully within 5 months and stable performance was achieved. The highest nitrogen removal reached 87.1% and the biggest volumetric total nitrogen removal rate reached 0.14kg/m3.d. The average ratio of ammonium, nitrite and nitrate was 1:1.21:0.33. (3)Taking the effluent of shortcut nitrification/denitrification as the influent, the nitrogen removal efficiency of Anammox was stable, and the the average removal percentage of ammonium, nitrite, total nitrogen and COD were 93.0%, 99.4% , 84.6% and 18.1%, respectively, which had little difference with that by using simulated wastewater..(4) After pretreatment, the residual organic carbon in piggery wastewater showed no obvious change during the Anammox process, and the main organic compounds were saturated hydrocarbon and ester, which had no obvious negative effect on Anammox process.(5) By PCR technology, the existence of Anammox bacteria was confirmed and the aerobic nitrifying bacteria was found to coexist as well. The result of blast showed that the identities of Anammox bacterium to part of 16S rRNA sequence of uncultured Planctomycetales bacterium and Candidatus Brocadia fulgida bacterium were 95% and 90%, respectively.(6)By MPN method, nitrite oxidizer, ammonium oxidizer and denitrification bacteria were detected in both simulated and piggery wastewater treatment system of Anammox, and the microorganism system was composed of Anammox bacteria,aerobic bacteria and denitrification bacteria together.
Resumo:
近年来各种环境污染事故频发,据统计仅2001~2003年间,发生的各类环境污染事故就高达5606次,其中水污染事故3235次,占全部的57.7%。这些事故不仅给人民生命财产造成巨大损失,也给生态环境造成严重的破坏。因此开发安全高效的应急处理技术迫在眉睫。本研究以筛选高效苯胺降解菌为基础,通过对高效菌降解性能的研究指导将高效菌作为功能郡主投加到已有生物处理系统强化应急处理苯胺突发污染事故废液,取得了良好的效果。 苯胺高效降解菌AN-P1为红球菌(Rhodococcus sp.),其通过间位途径降解苯胺,AN-P1利用苯胺生长和降解的最佳pH为6,最适浓度为2000 mg/L,最适温度为30 ℃,最佳接种量为0.3‰。AN-P1降解含500 mg/L、1000 mg/L、2000 mg/L苯胺的培养物分别经过28 h、24 h、32 h降解,出水苯胺含量能达到《污水综合排放标准》(GB8978-1996)一级标准。但由于苯胺降解过程中释放了大量氨氮,出水氨氮仍较高未能达标排放。而常规SBR系统应急处理效果较差,苯胺和COD去除率均低于10%,出水未能达标排放。活性碳吸附后的回收和后续处理也会带来操作不变和二次污染问题,且处理后出水往往难于达标排放,尚需进行进一步处理。 生物处理系统应急处理后恢复运行处理效果监测和PCR-DGGE图谱分析显示,用AN-P1菌强化应急处理系统后不仅能快速高效的去除苯胺,而且可以有效保障处理系统对污染物的净化性能,有效的保护系统中的功能微生物免受苯胺毒害。 研究结果表明,从实际处理效果、对原有生物系统性能保护及实际应用操作等多方面考虑,用AN-P1菌强化应急处理苯胺突发污染事故在技术上都是可行的。本研究为应急处理苯胺突然污染事故废液提供了新的方法。 Recent years, environment pollution accidents happened frequently, the data showed that there are 5606 accidents between 2001 and 2003, including 3235 water environment accidents, which is 57.7% of all. These accedents not only caused money lost and life lost but also caused serious damage to the ecologicl environment. So exploring highly-effective and secure methods to solve these accidents is an urgent mission. We screened a highly-effective aniline-degrading bacterium and did some researches on its ability to degrade aniline, in order to guide the emergency treatment of aniline containing wastewater that caused by sudden accident pollution with bioaugmentation. A highly-effective aniline-degrading bacterium AN-P1 was isolate and characterized as Rhodococcus sp. It degrades aniline through meta-cleavage pathway. The optimal pH and temperature for cell growth and aniline degradation were 6 and 30 ℃, respectively, and the opitimal concentration of aniline was 2000 mg/L, the optimal inoculation amount was 0.3‰.It took bacterium AN-P1 only 18 h, 24 h and 32 h, respectively, for the treatment of MSB containing 500 mg/L, 1000 mg/L, 2000 mg/L aniline to meet the first grade of national some of the NH4+-N which caused by aniline degradation. It took bacterium AN-P1 only 10 h, 20 h and 32 h, respectively, for the treatment of wastewater containing 500 mg/L, 1000 mg/L, 2000 mg/L aniline to meet the first grade of national integrated wastewater discharge standard. The bacterium AN-P1 can also remove some of the NH4+-N which caused by aniline degradation. It took bacterium AN-P1 only 10 h, 20 h and 32 h, respectively, for the treatment of wastewater containing 500 mg/L, 1000 mg/L, 2000 mg/L aniline to meet the first grade of national integrated wastewater discharge standard. By combing AN-P1 with regular SBR system, it took only 36 h for the emergency treatment of wastewater containing 2000 mg/L aniline under simulating engineering conditions to meet the discharge standard. While the NH4+-N of effluent can not meet the standard because of the high amount NH4+-N caused by aniline degradation. The regular SBR system was not good at aniline and COD removal. The removal efficiency of which are less than 10%. It cost 67.8 g activated carbon to absorbed 1000 mg aniline. It is inconvenient to transport and use it for the emergency treatment of aniline when the sudden pollution accident happened. Meanwhile, it was complex ad hard to recycle the activated carbon and treat the aniline wastewater get from activated carbon recycling too. Hard to meet the effluent standard was also a problem of activated carbon absorption method. According to the PCR-DGGE profile and removal efficiency of pollutants and COD when the systerm recover from emergency treatment, AN-P1 can efficiently protect the microbial community of regular activated sludge system against the aniline. It proved that combing AN-P1 with regular biological system is a feasible strategy for emergency treatment of aniline sudden pollution accident. The research offered a new way for emergency treatment of aniline sudden pollution accident.
Resumo:
Tongji Univ, Inst Dev Study, Syst Engn Soc China, Comm Syst Dynam, Syst Dynam Soc, China Chapter, Shanghai Inst Foreign Trade, Syst Dynam Soc, Chapters Asia Pacific Area