27 resultados para Remarkable subjectivity
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In/HZSM-5/ln(2)O(3) catalyst that contained two different kinds of In induced by the impregnating and the physical mixing method respectively has shown remarkable activity for the CH4-SCR of NOx comparing with In/HZSM-5. The addition of In2O3 into In/HZSM-5 improved the NO conversion through enhancing the adsorption of NOx over In/HZSM-5.
Resumo:
The title compound, {[Mn(C10H28N6)][Sn3Se7]}(n), consists of anionic (infinity){[Sn3Se7](2-)} layers interspersed by [Mn(peha)](2+) complex cations ( peha is pentaethylenehexamine). Pseudo-cubic (Sn3Se4) cluster units within each layer are held together to form a 6(3) net with a hole size of 8.74 x 13.87 angstrom. Weak N-H center dot center dot center dot Se interactions between the host inorganic frameworks and metal complexes extend the components into a three-dimensional network. The incorporation of metal complexes into the flexible anion layer dictates the distortion of the holes.
Resumo:
Highly uniform and well-dispersed CeO2 and CeO2:Eu3+ (Sm3+, Tb3+) nanocrystals were prepared by a nonhydrolytic solution route and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), UV/vis absorption, and photoluminescence (PL) spectra, respectively. The result of XRD indicates that the CeO2 nanocrystals are well crystallized with a cubic structure. The TEM images illustrate that the average size of CeO2 nanocrystals is about 3.5 nm in diameter. The absorption spectrum of CeO2:Eu3+ nanocrystals exhibits red-shifting with respect to that of the undoped CeO2 nanocrystals. Under the excitation of 440 nm (or 426 nm) light, the colloidal solution of the undoped CeO2 nanocrystals shows a very weak emission band with a maximum at 501 nm, which is remarkably enhanced by doping additional lanthanide ions (Eu3+, Tb3+, Sm3+) in the CeO2 nanocrystals. The emission band is not due to the characteristic emission of the lanthanide ions but might arise from the oxygen vacancy which is introduced in the fluorite lattice of the CeO2 nanocrystals to compensate the effective negative charge associated with the trivalent ions.
Resumo:
Hydrogenation of nitrobenzene can be catalyzed by the water-soluble catalyst PdCl2(TPPTS)(2) (TPPTS = tris(m-sulfonatophenyl)phosphine trisodium salt) under normal pressure at 65 degrees C in H2O/toluene biphasic solvent system. The exhibits higher catalytic activity and selectivity for the hydrogenation of aromatic nitrocompounds, compared with PdCl2(TPPTS)(2) or H2PtCl6 alone. The transmission electron micrographs demonstrate that the monometallic catalyst is composed of ultrafine palladium particles of almost uniform size while the particles of bimetallic catalyst are more widely distributed in size than those of the monometallic ones. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The Load/Unload Response Ratio (LURR) method is proposed for short-to-intermediate-term earthquake prediction [Yin, X.C., Chen, X.Z., Song, Z.P., Yin, C., 1995. A New Approach to Earthquake Prediction — The Load/Unload Response Ratio (LURR) Theory, Pure Appl. Geophys., 145, 701–715]. This method is based on measuring the ratio between Benioff strains released during the time periods of loading and unloading, corresponding to the Coulomb Failure Stress change induced by Earth tides on optimally oriented faults. According to the method, the LURR time series usually climb to an anomalously high peak prior to occurrence of a large earthquake. Previous studies have indicated that the size of critical seismogenic region selected for LURR measurements has great influence on the evaluation of LURR. In this study, we replace the circular region usually adopted in LURR practice with an area within which the tectonic stress change would mostly affect the Coulomb stress on a potential seismogenic fault of a future event. The Coulomb stress change before a hypothetical earthquake is calculated based on a simple back-slip dislocation model of the event. This new algorithm, by combining the LURR method with our choice of identified area with increased Coulomb stress, is devised to improve the sensitivity of LURR to measure criticality of stress accumulation before a large earthquake. Retrospective tests of this algorithm on four large earthquakes occurred in California over the last two decades show remarkable enhancement of the LURR precursory anomalies. For some strong events of lesser magnitudes occurred in the same neighborhoods and during the same time periods, significant anomalies are found if circular areas are used, and are not found if increased Coulomb stress areas are used for LURR data selection. The unique feature of this algorithm may provide stronger constraints on forecasts of the size and location of future large events.
Resumo:
Nanocrystalline (nc) materials are characterized by a typical grain size of 1-100nm. The uniaxial tensile deformation of computer-generated nc samples, with several average grain sizes ranging from 5.38 to 1.79nm, is simulated by using molecular dynamics with the Finnis-Sinclair potential. The influence of grain size and temperature on the mechanical deformation is studied in this paper. The simulated nc samples show a reverse Hall-Petch effect. Grain boundary sliding and motion, as well as grain rotation are mainly responsible for the plastic deformation. At low temperatures, partial dislocation activities play a minor role during the deformation. This role begins to occur at the strain of 5%, and is progressively remarkable with increasing average grain size. However, at elevated temperatures no dislocation activity is detected, and the diffusion of grain boundaries may come into play.
Resumo:
A new type of pulverized-coal combustor, called "Wall-Protecting-Jets Combustor" (hereafter, WPJC has been proposed, designed and studied with both CFD (Computational Fluid Dynamics) and experimental methods. The WPJC is based on a novel concept in which all inlet jets are along the combustor wall. Pilot combustion experiments were conducted to investigate the combustion performance of WPJC. Two-phase flows and pulverized-coal combustion were simulated to study the mechanism of),WPJC using the commercial software FLUENT. The results show that the WPJC has many remarkable advantages: wall-protection by the cold jets without the use of refractory materials; low-temperature and three-stage combustion with low NOx emission; negligible ash/slag-deposition; multiple functions with convenient switching between them; effective adjustment of the combustion intensity and the ignition position.
Resumo:
The aim of this study was to investigate the effect of temperature on tribological properties of plasma-sprayed Al-Cu-Fe quasicrystal (QC) coating after laser re-melting treatment. The laser treatment resulted in a more uniform, denser and harder microstructure than that of the as-sprayed coatings. Tribological experiments on the coatings were conducted under reciprocating motion at high frequency in the temperature range from 25 to 650 degreesC. Remarkable influence of temperature on the friction behavior of the coating was recorded and analyzed. Microstructural analysis indicated that the wear mechanisms of the re-melted QC coatings changed from abrasive wear at room temperature, to adhesive wear at 400 degreesC and severe adhesive wear at 650 degreesC owing to the material transfer of the counterpart ball. It was also observed that the ratio of the icosahedral (i)-phase to beta-Al-50(Fe,CU)(50) phase in the coating was higher after test at 400 'C than that at 650 'C. The variation of the ratio UP of coating and of the property of the counterpart ball and coating with the temperature are the two main factors influencing the wear mechanisms and value of the friction coefficient.
Resumo:
The experimental and theoretical studies are reported in this paper for the head-on collisions of a liquid droplet with another of the same fluid resting on a solid substrate. The droplet on the hydrophobic polydimethylsiloxane (PDMS) substrate remains in a shape of an approximately spherical segment and is isometric to an incoming droplet. The colliding process of the binary droplets was recorded with high-speed photography. Head-on collisions saw four different types of response in our experiments: complete rebound, coalescence, partial rebound With conglutination, and coalescence accompanied by conglutination. For a complete rebound, both droplets exhibited remarkable elasticity and the contact time of the two colliding droplets was found to be in the range of 10-20 ms. With both droplets approximately considered as elastic bodies, Hertz contact theory was introduced to estimate the contact time for the complete rebound case. The estimated result Was found to be on the same order of magnitude as the experimental data, which indicates that the present model is reasonable. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The invariant representation of the spin tensor defined as the rotation rate of a principal triad for a symmetric and non-degenerate tensor is derived on the basis of the general solution of a linear tensorial equation. The result can be naturally specified to study the. spin of the stretch tensors and to investigate the relations between various rotation rate tensors encountered frequently in modern continuum mechanics. A remarkable formula which relates the generalized stress conjugate to the generalized strain in Hill's sense. to Cauchy stress, is obtained in invariant form through the work conjugate principle. Particularly, a detailed discussion on the time rate of logarithmic strain and its conjugate stress is made as the principal axes of strain arc not fixed during deformation.
Resumo:
Gas film lubrication of a three-dimensional flat read-write head slider is calculated using the information preservation (IP) method and the direct simulation Monte Carlo (DSMC) method, respectively. The pressure distributions on the head slider surface at different velocities and flying heights obtained by the two methods are in excellent agreement. IP method is also employed to deal with head slider with three-dimensional complex configuration. The pressure distribution on the head slider surface and the net lifting force obtained by the IP method also agree well with those of DSMC method. Much less (of the order about 10(2) less) computational time (the sum of the time used to reach a steady stage and the time used in sampling process) is needed by the IP method than the DSMC method and such an advantage is more remarkable as the gas velocity decreases.
Resumo:
Tension leg platform (TLP) is an important kind of working station for deep water exploration and development in ocean, whose dynamic responses deserve a serious thought. It is shown that for severe sea state, the effects of nonlinearities induced by large displacements of TLP may be noteworthy, and then employment of small displacements model should be restrained. In such situation, large amplitude motion model may be an appropriate alternative. The numerical experiments are performed to study the differences of dynamic responses between the two models. It is shown that for most cases, differences between results of the two models are significant. The variances of the differences vs. the wave period are the most remarkable, and that of the differences vs. wave heading angle are also apparent.