10 resultados para Regulatory T cells
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
CD4+CD25+调节性T细胞是1995年才发现的一个具有免疫抑制功能的T细胞亚群,主要通过细胞与细胞间直接接触和分泌抑制性细胞因子发挥作用,在维持机体免疫自稳、防止自身免疫以及肿瘤免疫、移植免疫等方面起着重要作用。有关Treg HIV/SIV病毒感染及AIDS的进展关系密切,但却有两种不同的观点。一种认为Treg的数量和功能受到损伤,从而导致宿主免疫系统过度活化。另一种则认为Treg在早期抑制了针对HIV/SIV的特异性的免疫反应,从而导致机体无法清除感染的病毒。本文利用动物模型对CD4+CD25+调节性T细胞在SIV感染后的数量和功能做了动态的检测,并对其中的机制做了初步的探讨。我们首先建立了SIVmac239病毒株对中国起源的恒河猴感染的动物模型,建立了前病毒的检测方法、血浆病毒载量的测定方法、血浆病毒特异性抗体的测定方法,以及病毒的分离方法,并获得了早期感染的相关数据。在研究中我们发现,SIV感染后的1周后即可在恒河猴外周单个核细胞DNA中检测到前病毒。病毒血症也在1周后出现,并很快达到高峰。不同的个体对病毒感染的体液免疫不尽相同,血浆抗体很快出现,但是99003猴抗体下降很快,而99083猴则保持了一定数量的抗体。同时,伴随SIV的感染进程的还有T淋巴细胞的数量变化,CD4+T细胞数量持续下降,而CD8+T细胞数量则在增加,出现CD4/CD8倒置的现象。以上说明恒河猴被SIV所成功感染。在该动物模型的基础上,我们利用体内传代的SIVmac239病毒株,对4只健康恒河猴进行了感染,并对CD4+CD25+调节性T细胞(Treg)亚群在数量上的变化进行了检测,并对其中的机制做了初步探讨。我们在研究中发现,外周血中的Treg在SIV感染后无论是绝对数量还是在占CD4+T细胞中的相对数量均有增加,而且Treg仍然保持了对靶细胞的抑制功能。对腹部淋巴结的分析显示,SIV感染后的一段时期内,该部位FoxP3 mRNA的表达水平也在上升,TGF-β、IL-10的转录也显著增加。前者可以通过抑制树突状细胞间接抑制效应细胞,而后者则是一个抑制性的细胞因子,可以直接作用于靶细胞。因此,我们推测SIV引起免疫系统的过度活化可能不是由于Treg功能的受损,其中的机制需要深入研究。 Treg表达CCR5表面分子(HIV辅助受体之一),同时也有CD4分子的表达,因此推测HIV/SIV可以感染Treg。但是国内外这方面的文献很少。我们对Treg中前病毒的检测发现,SIV可以感染Treg,而且对Treg的感染比例高于CD4+CD25-T细胞。这个结果与Treg绝对数量的上升的结果说明,SIV感染Treg但可能却没有杀伤Treg,因此Treg在数量上有所增加。不过,其中的机制仍有待于进一步的研究。在对SIV引起的体液免疫的研究中还发现,机体针对SIV不同抗原的抗体有不同的模式。部分抗原很快就产生了比较强的反应,但是却不能维持高水平的表达。而针对p27蛋白的抗体产生比较晚,但却长时间维持在比较高的水平。是否这样高水平的抗体有助于控制病毒复制是个值得探讨的问题。
Resumo:
Sertoli cells play a central role in the control and maintenance of spermatogenesis. Isolated Sertoli cells of mouse and rat testes have been shown to secrete plasminogen activator (PA) and a plasminogen activator inhibitor type-1 (PAI-1) in culture. In this study, we have investigated the hormonal regulation of PA and PAI-1 activities in cultured monkey Sertoli cells. Sertoli cells (5x10(5) cells/well) isolated from infant rhesus monkey testes were preincubated at 35 degrees C for 16 h in 24-well plates precoated with poly(D-lysine) (5 mu g/cm(2)) in 0.5 mi McCoy's 5a medium containing 5% of fetal calf serum and further incubated for 48 h in 0.5 mi serum-free medium with or without various hormones or other compounds, PA as well as PAI-1 activities in the conditioned media were assayed by fibrin overlay and reverse fibrin autography techniques respectively. The Sertoli cells in vitro secreted only tissue-type PA (tPA), no detectable amount of urokinase-type PA (uPA) could be observed, Monkey Sertoli cells were also capable of secreting PAI-1, Immunocytochemical studies indicated that both tPA and PAI-1 positive staining localized in the Sertoli cells, spermatids and residual bodies of the seminiferous epithelium; Northern blot analysis further confirmed the presence of both tPA and PAI-1 mRNA in monkey Sertoli cells. Addition of follicle-stimulating hormone (FSH) or cyclic adenosine monophosphate (cAMP) derivatives or cAMP-generating agents and gonadotrophin-releasing hormone (GnRH) agonist or phorbol ester (PMA) to the cell culture significantly increased tPA activity. PAI-1 activity in the culture was also enhanced by these reagents except 8-bromo-dibutyryl-cAMP, forskolin and 3-isobutyl-1-methylxanthin (MIX) which greatly stimulated tPA activity, whereas decreased PAI-1 activity, implying that neutralization of PAI-1 activity by tile high level of tPA in the conditioned media may occur. These data suggest that increased intracellular signals which activate protein kinase A (PKA), or protein kinase C (PKC) can modulate Sertoli cell tPA and PAI-1 activities, The concomitant induction of PA and PAI-1 by the same reagents in the Sertoli cells may reflect a finely tuned regulatory mechanism in which PAI-1 could limit the excession of the proteolysis.
Resumo:
Interferon (IFN)-regulatory transcription factor-1 (IRF-1) has been studied in mammals and fish but little is known about the relationship between its gene structure and nuclear 'ion of IRF-1 protein. In this study, a cDNA encoding Carassius auratus IRF-1 (CaIRF-1) was isolated from an interferon-producing cell line, C. ouratus blastulae embryonic (CAB) cells, exposed to UV-inactivated grass carp hemorrhagic virus (GCHV). The CaIRF-1 genomic locus exhibits exon-intron arrangements similar to those of other vertebrate IRF-1 loci, with nine exons and eight introns, although together with pufferfish IRF-1, CaIRF-1 distinguishes itself from other vertebrate IRF-1 genes by a relatively compact genomic size. Similar to the known IRF-1 genes, CaIRF-1 is ubiquitously expressed, and is upregulated in vitro and in vivo in response to virus, Poty I:C, or CAB INF-containing supernatant (ICS). Subcellular localization analysis confirms the nuclear distribution of CaIRF-1 protein, and reveals two nuclear localization signals (NILS), any one of which is sufficient for nuclear translocation of CaIRF-1. One NLS Locates to amino acids 117-146, and appears to be the structural and functional equivalent of the NLS in mammalian IRF-1. The second NLS (amino acids 73-115) is found within the DNA-binding domain (DBD) of CaIRF-1, and contains two regions rich in basic amino acids (''(KDKSINK101)-K-95" and ''(75)KTWKANFR(82)"). In comparison with mammalian IRF-1, in which the corresponding amino acid stretch does not seem to drive nuclear translocation, five conserved basic amino acids (K-75, K-78, R-82, K-95, and K-101) and one non-conserved basic amino acid (K-97) are present in this NLS from CaIRF-1. This observation suggests that K97 Of CaIRF-1 might be essential for the function of its second NLS, wherein the six basic aminoacids might cooperate to drive CaIRF-1 to the nucleus. Therefore, the current study has revealed a new nuclear localization motif in the DBD of a vertebrate IRF-1. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Virus infection of mammalian cells activates an innate antiviral immune response characterized by production of interferon (IFN) and the subsequent transcriptional upregulation of IFN-stimulated genes (ISGs) by the JAK-STAT signaling pathway. Here, we report that a fish cell line, crucian carp (Carassius auratus L.) blastulae embryonic (CAB) cells, can produce IFN activity and then form an antiviral state after infection with UV-inactivated grass carp hemorrhagic virus (GCHV), a double-stranded (ds) RNA virus. From UV-inactivated GCHV-infected CAB cells, 15 pivotal genes were cloned and sequenced, and all of them were shown to be involved in IFN antiviral innate immune response. These IFN system genes include the dsRNA signal sensing factor TLR3, IFN, IFN signal transduction factor STAT1, IFN regulatory factor IRF7, putative IFN antiviral effectors Mx1, Mx2, PKR-like, Viperin, IFI56, and other IFN stimulated genes (ISGs) IFI58, ISG15-1, ISG15-2, USP18, Gig1 and Gig2. The identified fish IFN system genes were highly induced by active GCHV, UV-inactivated GCHV, CAB IFN or poly(I).poly(C), and showed similar expression patterns to mammals. The data indicate that an IFN antiviral innate immune response similar to that in mammals exists in the UV-inactivated GCHV-infected CAB cells, and the IFN response contributes to the formation of an antiviral state probably through JAK-STAT signaling pathway. This study provides strong evidence for existence of IFN antiviral innate immune response in fish, and will assist in elucidating the origin and evolution of vertebrate IFN system. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Embryonic stem (ES) cells provide a unique tool for introducing random or targeted genetic alterations, because it is possible that the desired, but extremely rare recombinant genotypes can be screened by drug selection. ES cell-mediated transgenesis has so far been limited to the mouse. In the fish medaka (Oryzias latipes) several ES cell lines have been made available. Here we report the optimized conditions for gene transfer and drug selection in the medaka ES cell line MES1 as a prelude for gene targeting in fish. MES1 cells gave rise to a moderate to high transfection efficiency by the calcium phosphate co-precipitation (5%), commercial reagents Fugene (11%), GeneJuice (21%) and electroporation (>30%). Transient gene transfer and CAT reporter assay revealed that several enhancers/promoters and their combinations including CMV, RSV and ST (the SV40 virus early gene enhancer linked to the thymidine kinase promoter) were suitable regulatory sequences to drive transgene expression in the MES1 cells. We show that neo, hyg or pac conferred resistance to G418, hygromycin or puromycin for positive selection, while the HSV-tk generated sensitivity to ganciclovir for negative selection. The positive-negative selection procedure that is widely used for gene targeting in mouse ES cells was found to be effective also in MES1 cells. Importantly, we demonstrate that MES1 cells after gene transfer and long-term drug selection retained the developmental pluripotency, as they were able to undergo induced differentiation in vitro and to contribute to various tissues and organs during chimeric embryogenesis.
Resumo:
Interferon (IFN) can induce an antiviral state via interferon-regulatory transcription factors (IRFs), which bind to and control genes directed by the interferon-stimulated response element (ISRE). Here we describe a fish IRF, termed CaIRF7, cloned from a subtractive cDNA library which is constructed with mRNAs obtained from crucian carp (Carassius auratus L.) blastulae embryonic (CAB) cells infected by UV-inactivated GCHV and mock-infected cells. CaIRF7 cDNA was found to be 1816 bp in length, with a 42 bp 5' UTR and a 508 bp 3' UTR. The open reading frame translates into 421 amino acids in which a DNA-binding domain (DBD) containing the repeated tryptophan motif and IRFs association domain have been identified. Like chicken GgIRF3, CaIRF7 was most similar to mammalian IRF7 with 27 to 30% identity overall and some 37% identity in their DBDs. A single transcript of 1.9 kb was detected in virally induced CAB cells by virtual Northern blotting. RT-PCR analysis revealed a wide tissue distribution of CaIRF7 constitutive expression, with detectable transcript in non-infected CAB cells and various tissues of healthy crucian carp. In addition, CaIRF7 expression was differentially increased by stimulation of the CAB cells with active GCHV, UV-inactivated GCHV or CAB IFN, indicating that the activation of CaIRF7 was directly regulated by IFN. (C) 2003 Published by Elsevier Ltd.
Resumo:
The Sleeping Beauty (SB) transposon system, derived from teleost fish sequences, is extremely effective at delivering DNA to vertebrate genomes, including those of humans. We have examined several parameters of the SB system to improve it as a potential, nonviral vector for gene therapy. Our investigation centered on three features: the carrying capacity of the transposon for efficient integration into chromosomes of HeLa cells, the effects of overexpression of the SB transposase gene on transposition rates, and improvements in the activity of SB transposase to increase insertion rates of transgenes into cellular chromosomes. We found that SB transposons of about 6 kb retained 50% of the maximal efficiency of transposition, which is sufficient to deliver 70-80% of identified human cDNAs with appropriate transcriptional regulatory sequences. Overexpression inhibition studies revealed that there are optimal ratios of SB transposase to transposon for maximal rates of transposition, suggesting that conditions of delivery of the two-part transposon system are important for the best gene-transfer efficiencies. We further refined the SB transposase to incorporate several amino acid substitutions, the result of which led to an improved transposase called SB11. With SB11 we are able to achieve transposition rates that are about 100-fold above those achieved with plasmids that insert into chromosomes by random recombination. With the recently described improvements to the transposon itself, the SB system appears to be a potential gene-transfer tool for human gene therapy.
Resumo:
The authors developed a time dependent method to study the single molecule dynamics of a simple gene regulatory network: a repressilator with three genes mutually repressing each other. They quantitatively characterize the time evolution dynamics of the repressilator. Furthermore, they study purely dynamical issues such as statistical fluctuations and noise evolution. They illustrated some important features of the biological network such as monostability, spirals, and limit cycle oscillation. Explicit time dependent Fano factors which describe noise evolution and show statistical fluctuations out of equilibrium can be significant and far from the Poisson distribution. They explore the phase space and the interrelationships among fluctuations, order, amplitude, and period of oscillations of the repressilators. The authors found that repressilators follow ordered limit cycle orbits and are more likely to appear in the lower fluctuating regions. The amplitude of the repressilators increases as the suppressing of the genes decreases and production of proteins increases. The oscillation period of the repressilators decreases as the suppressing of the genes decreases and production of proteins increases.
Resumo:
Myf-5, a member of the myogenic regulatory factors (MRF), has been shown to be expressed in muscle precursors in early stage zebrafish embryos. The MRFs, including MyoD, Myf-5, Myogenin and MR-F4, belong to the basic Helix-Loop-Helix transcription factors that contain a conserved basic Helix-Loop-Helix (bHLH) domain. To better understand the role of Myf-5 in the development of fish muscles, we have isolated the Myf-5 genomic sequence and cDNA from Flounder (Paralichthys olivaceus), and analyzed its structures and patterns of expression. Promoter analysis identified several putative transcription factor binding sites such as an E-box, NF-Y sites that might confer muscle-specific expression. Myf-5 transcripts were first detected in the paraxial mesoderm that gives rise to slow muscles. During somitogenesis, Myf-5 expression was found in developing somites. Myf-5 expression decreased gradually in somites in the anterior region, but remained strong in the newly formed somites. In the hatching stage, the expression was also detected in other muscle cells such as head muscle and fin muscle. In the growing fish, RT-PCR results showed that Myf-5 was expressed in the skeletal muscle and intestine. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Specification and differentiation of skeletal muscle cells are driven by the activity of genes encoding members of the myogenic regulatory factors (MRFs). In vertebrates, the MRF family includes MyoD, Myf5, myogenin, and MRF4. The MRFs are capable of converting a variety of nonmuscle cells into myoblasts and myotubes. To better understand their roles in fish muscle development, we isolated the MyoD gene from flounder (Paralichthys olivaceus) and analyzed its structure and patterns of expression. Sequence analysis showed that flounder MyoD shared a structure similar to that of vertebrate MRFs with three exons and two introns, and its protein contained a highly conserved basic helix-loop-helix domain (bHLH). Comparison of sequences revealed that flounder MyoD was highly conserved with other fish MyoD genes. Sequence alignment and phylogenetic analysis indicated that flounder MyoD, seabream (Sparus aurata) MyoD1, takifugu (Takifugu rubripes) MyoD, and tilapia (Oreochromis aureus) MyoD were more likely to be homologous genes. Flounder MyoD expression was first detected as two rows of presomitic cells in the segmental plate. From somitogenesis, MyoD transcripts were present in the adaxial cells that give rise to slow muscles and the lateral somitic cells that give rise to fast muscles. After 30 somites formed, MyoD expression decreased in the somites except the caudal somites, coincident with somite maturation. In the hatching stage, MyoD was expressed in other muscle cells and caudal somites. It was detected only in muscle in the growing fish.