55 resultados para Reef Condition
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A series of acoustic emission (AE) experiments of rock failure have been conducted under cyclic load in tri-axial stress tests. To simulate the hypocenter condition the specimens are loaded by the combined action of a constant stress, intended to simulate
Resumo:
A visual observation of liquid-gas two-phase flow in anode channels of a direct methanol proton exchange membrane fuel cells in microgravity has been carried out in a drop tower. The anode flow bed consisted of 2 manifolds and 11 parallel straight channels. The length, width and depth of single channel with rectangular cross section was 48.0 mm, 2.5 mm and 2.0 mm, respectively. The experimental results indicated that the size of bubbles in microgravity condition is bigger than that in normal gravity. The longer the time, the bigger the bubbles. The velocity of bubbles rising is slower than that in normal gravity because buoyancy lift is very weak in microgravity. The flow pattern in anode channels could change from bubbly flow in normal gravity to slug flow in microgravity. The gas slugs blocked supply of reactants from channels to anode catalyst layer through gas diffusion layer. When the weakened mass transfer causes concentration polarization, the output performance of fuel cells declines.
Resumo:
This paper studies the surface melting in the atmosphere by YAG laser-guided micro-arc discharge. In three kinds of surface conditions (free, oiled, and polyethylene covered), we try to control the diameter and the power density of discharge pit. It is found that the power density of 3 x 10(6) W/cm(2) of discharge pit on the oiled surface is moderate to form the melted layer thicker than that of the others, adapting to strengthen the surface of material, and the power density of 1.07 x 10(7) W/cm(2) of discharge pit on the polyethylene-covered surface is highest to form the deepest discharge pit among them, adapting to remove the material.
Resumo:
Strain energy density expressions are obtained from a field model that can qualitatively exhibit how the electrical and mechanical disturbances would affect the crack growth behavior in ferroelectric ceramics. Simplification is achieved by considering only three material constants to account for elastic, piezoelectric and dielectric effects. Cross interaction of electric field (or displacement) with mechanical stress (or strain) is identified with the piezoelectric effect; it occurs only when the pole is aligned normal to the crack. Switching of the pole axis by 90degrees and 180degrees is examined for possible connection with domain switching. Opposing crack growth behavior can be obtained when the specification of mechanical stress sigma(infinity) and electric field E-infinity or (sigma(infinity), E-infinity) is replaced by strain e and electric displacement D-infinity or (epsilon(infinity), D-infinity). Mixed conditions (sigma(infinity),D-infinity) and (epsilon(infinity),E-infinity) are also considered. In general, crack growth is found to be larger when compared to that without the application of electric disturbances. This includes both the electric field and displacement. For the eight possible boundary conditions, crack growth retardation is identified only with (E-y(infinity),sigma(y)(infinity)) for negative E-y(infinity) and (D-y(infinity), epsilon(y)(infinity)) for positive D-y(infinity) while the mechanical conditions sigma(y)(infinity) or epsilon(y)infinity are not changed. Suitable combinations of the elastic, piezoelectric and dielectric material constants could also be made to suppress crack growth. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
For simulating multi-scale complex flow fields it should be noted that all the physical quantities we are interested in must be simulated well. With limitation of the computer resources it is preferred to use high order accurate difference schemes. Because of their high accuracy and small stencil of grid points computational fluid dynamics (CFD) workers pay more attention to compact schemes recently. For simulating the complex flow fields the treatment of boundary conditions at the far field boundary points and near far field boundary points is very important. According to authors' experience and published results some aspects of boundary condition treatment for far field boundary are presented, and the emphasis is on treatment of boundary conditions for the upwind compact schemes. The consistent treatment of boundary conditions at the near boundary points is also discussed. At the end of the paper are given some numerical examples. The computed results with presented method are satisfactory.
Resumo:
For high-speed-flow lasers, the one-dimensional and first-order approximate treatment in[1] under approximation of geometrical optics is improved still within the scope of approx-imation of geometrical optics. The strict accurate results are obtained, and what is more,two- and three-dimensional treatments are done. Thus for two- and three-dimensional cases, thestable oscillation condition, the formulae of power output and analytical expression of modesunder approximation of geometrical optics (in terms of gain function) are derived. Accord-ing to the present theory, one-and two-dimensional calculations for the typical case of Gerry'sexperiment are presented. All the results coincide well with the experiment and are better thanthe results obtained in [1].In addition, the applicable scope of Lee's stable oscillation condition given by [1] is ex-panded; the condition for the approximation of gcometrical optics to be applied to mode con-structure in optical cavity is obtained for the first time and the difference between thiscondition and that for free space is also pointed out in the present work.
Resumo:
A visual observation of liquid-gas two-phase flow in anode channels of a direct methanol proton exchange membrane fuel cells in microgravity has been carried out in a drop tower. The anode flow bed consisted of 2 manifolds and 11 parallel straight channels. The length, width and depth of single channel with rectangular cross section was 48.0 mm, 2.5 mm and 2.0 mm, respectively. The experimental results indicated that the size of bubbles in microgravity condition is bigger than that in normal gravity. The longer the time, the bigger the bubbles. The velocity of bubbles rising is slower than that in normal gravity because buoyancy lift is very weak in microgravity. The flow pattern in anode channels could change from bubbly flow in normal gravity to slug flow in microgravity. The gas slugs blocked supply of reactants from channels to anode catalyst layer through gas diffusion layer. When the weakened mass transfer causes concentration polarization, the output performance of fuel cells declines.
Resumo:
Polymer deposition is a serious problem associated with the etching of fused silica by use of inductively coupled plasma (ICP) technology, and it usually prevents further etching. We report an optimized etching condition under which no polymer deposition will occur for etching fused silica with ICP technology. Under the optimized etching condition, surfaces of the fabricated fused silica gratings are smooth and clean. Etch rate of fused silica is relatively high, and it demonstrates a linear relation between etched depth and working time. Results of the diffraction of gratings fabricated under the optimized etching condition match theoretical results well. (c) 2005 Optical Society of America.
Resumo:
Giaridia lamblia was long considered to be one of the most primitive eukaryotes and to lie close to the transition between prokaryotes and eukaryotes, but several supporting features, such as lack of mitochondrion and Golgi, have been challenged recently. It was also reported previously that G. lamblia lacked nucleolus, which is the site of pre-rRNA processing and ribosomal assembling in the other eukaryotic cells. Here, we report the identification of the yeast homolog gene, krr1, in the anucleolate eukaryote, G. lamblia. The krr1 gene, encoding one of the pre-rRNA processing proteins in yeast, is actively transcribed in G. lamblia. The deduced protein sequence of G. lamblia krr1 is highly similar to yeast KRR1p that contains a single-KH domain. Our database searches indicated that krr1 genes actually present in diverse eukaryotes and also seem to present in Archaea. However, only the eukaryotic homologs, including that of G. lamblia, have the single-KH domain, which contains the conserved motif KR(K)R. Fibrillarin, another important pre-rRNA processing protein has also been identified previously in G. lamblia. Moreover, our database search shows that nearly half of the other nucleolus-localized protein genes of eukaryotic cells also have their homologs in Giardia. Therefore, we suggest that a common mechanism of pre-RNA processing may operate in the anucleolate eukaryote G. lamblia and in the other eukaryotes and that like the case of "lack of mitochondrion," "lack of nucleolus" may not be a primitive feature, but a secondarily evolutionary condition of the parasite.
Resumo:
Assessment method for ecological condition of Xiangxi River system was studied by using 13 candidate metrics of epilithic diatom which can reflect conditions in pH, salinity, nitrogen uptake metabolism, oxygen requirements, saprobity, trophic state, morphological character and pollution tolerant capability etc. By one-way ANOVA, the metrics of relative abundance of acidobiontic algae (ACID), freshwater algae (FRESH), high oxygen requirement (HIGH-O), eutraphentic state (EUTRA) and mobile taxa ( MOBILE) were suitable for distinguishing sites in different conditions. Then, the river diatom index (RDI) composed of these five metrics was used to evaluate ecological condition of the river. The results showed that the healthiest sites were in the Guanmenshan Natural Reserve ( with the mean RDI of 79.73). The sites located in tributary of Jiuchong River also owned excellent state (mean RDI of 78.25). Mean RDI of another tributary - Gufu River and the main river were 70.85 and 68.45 respectively, and the unhealthiest tributary was Gaolan River (with mean RDI of 65.64). The mean RDI for all the 51 sites was 71.40. The competence of RDI was discussed with comparison of evaluation results of DAIpo and TDI, it can be concluded that multimetrics is more competent in assessment task.
Resumo:
Small fish abundance is usually high in heavily vegetated habitats in Yangtze lakes, China. Visual and swimming barriers created by dense macrophytes beds could reduce feeding efficiency and growth of small fishes. We tested the hypothesis that small fishes in habitats with dense macrophytes would show decreased feeding efficiency and reduced growth rates by comparing feeding efficiency (measured as the relative weight of fore-gut contents), total length, and condition factor of four small young-of-the-year fishes collected in the near-shore (heavily vegetated) and central (less vegetated) areas of Liangzi Lake. Feeding efficiency, total length, or condition factor were each significantly reduced in the near-shore area compared with the central area for Ctenogobius giurinus, Pseudorasbora parva and Carassius auratus auratus. This supports our hypothesis that vegetation abundance may mediate feeding efficiency and growth of small fishes. Although Hypseleotris swinhonis did not show significant decreases in feeding efficiency or growth in the near-shore area, there was not any reversed tendency, i.e. increased feeding rate or growth in the near-shore area compared to the central area.