172 resultados para Rapid tests
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A numerical model has been developed for simulating the rapid solidification processing (RSP) of Ni-Al alloy in order to predict the resultant phase composition semi-quantitatively during RSP. The present model couples the initial nucleation temperature evaluating method based on the time dependent nucleation theory, and solidified volume fraction calculation model based on the kinetics model of dendrite growth in undercooled melt. This model has been applied to predict the cooling curve and the volume fraction of solidified phases of Ni-Al alloy in planar flow casting. The numerical results agree with the experimental results semi-quantitatively.
Resumo:
With the recent rapid growth of Radio Frequency Micro-Electro-Mechanical Systems (RF MEMS) switches, there has developed an emergent requirement for more accurate theoretical models to predict their electromechanical behaviors. Many parameters exist in the analysis of the behavior of the switch, and it is inconvenient for further study. In this paper, an improved model is introduced, considering simultaneously axial stress, residual stress, and fringing-field effect of the fixed-fixed bridge structure. To avoid any unnecessary repetitive model tests and numerical simulation for RF MEMS switches, some dimensionless numbers are derived by making governing equation dimensionless. The electromechanical behavior of the fixed-fixed bridge structure of RF MEMS switches is totally determined by these dimensionless numbers.
Resumo:
Niobium-silicide alloys have great potential for high temperature turbine applications. The two-phase Nb/Nb5Si3 in situ composites exhibit a good balance in mechanical properties. Using the 52 in drop tube, the effect of undercooling and rapid solidification on the solidification process and micro-structural characterization of Nb-Si eutectic alloy was studied. The microstructures of the Nb-Si composites were investigated by optics microscope (OM), X-ray diffraction (XRD) and scanning electron microscope (SEM) equipped with X-ray energy dispersive spectrometry (EDS). Up to 480 K, deep undercooling of the Nb-Si eutectic samples was successfully obtained, which corresponds to 25% of the liquidus temperature. Contrasting to the conventional microstructure usually found in the Nb-Si eutectic alloy, the microstructure of the undercooled sample is divided into the fine and coarse regions. The most commonly observed microstructure is Nb+Nb5Si3, and the Nb3Si phase is not be found. The change of coarseness of microstructure is due to different cooling rates during and after recalescence. The large undercooling is sufficient to completely bypass the high temperature phase field.
Resumo:
Surface rapid solidification microstructures of AISI 321 austenitic stainless steel and 2024 aluminum alloy have been investigated by electron beam remelting process and optical microscopy observation. It is indicated that the morphologies of the melted layer of both stainless steel and aluminum alloy change dramatically compared to the original materials. Also, the microstructures were greatly refined after the electron beam irradiation.
Fracture Mechanisms And Size Effects Of Brittle Metallic Foams: In Situ Compression Tests Inside Sem
Resumo:
In situ compressive tests on specially designed small samples made from brittle metallic foams were accomplished in a loading device equipped in the scanning electron microscopy (SEM). Each of the small samples comprises only several cells in the effective test zone (ETZ), with one major cell in the middle. In such a system one can not only obtain sequential collapse-process images of a single cell and its cell walls with high resolution, but also correlate the detailed failure behaviour of the cell walls with the stress-strain response, therefore reveal the mechanisms of energy absorption in the mesoscopic scale. Meanwhile, the stress-strain behaviour is quite different from that of bulk foams in dimensions of enough large, indicating a strong size effect. According to the in situ observations, four failure modes in the cell-wall level were summarized, and these modes account for the mesoscopic mechanisms of energy absorption. Paralleled compression tests on bulk samples were also carried out, and it is found that both fracturing of a single cell and developing of fracture bands are defect-directed or weakness-directed processes. The mechanical properties of the brittle aluminum foams obtained from the present tests agree well with the size effect model for ductile cellular solids proposed by Onck et al. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Micro anchor is a kind of typical structures in micro/nano electromechanical systems (MEMS/NEMS), and it can be made by anodic bonding process, with thin films of metal or alloy as an intermediate layer. At the relative low temperature and voltage, specimens with actually sized micro anchor structures were anodically bonded using Pyrex 7740 glass and patterned crystalline silicon chips coated with aluminum thin film with a thickness comprised between 50 nm and 230 nm. To evaluate the bonding quality, tensile pulling tests have been finished with newly designed flexible fixtures for these specimens. The experimental results exhibit that the bonding tensile strength increases with the bonding temperature and voltage, but it decreases with the increase of the thickness of Al intermediate layer. This kind of thickness effect of the intermediate layer was not mentioned in the literature on anodic bonding. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A computer simulation was performed to explore the features and effects of sedimentation on rapid coagulation. To estimate the accumulated influence of gravity on coagulation for dispersions, a sedimentation influence ratio is defined. Some factors possibly related to the influence of sedimentation were considered in the simulation and analysed by comparing the size distribution of aggregates, the change in collision number, and coagulation rates at different gravity levels (0 g, 1 g and more with g being the gravitational constant).
Resumo:
Niobium-silicide alloys have great potential for high temperature turbine applications. The two-phase Nb/Nb5Si3 in situ composites exhibit a good balance in mechanical properties. Using the 52 in drop tube, the effect of undercooling and rapid solidification on the solidification process and micro-structural characterization of Nb-Si eutectic alloy was studied. The microstructures of the Nb-Si composites were investigated by optics microscope (OM), X-ray diffraction (XRD) and scanning electron microscope (SEM) equipped with X-ray energy dispersive spectrometry (EDS). Up to 480 K, deep undercooling of the Nb-Si eutectic samples was successfully obtained, which corresponds to 25% of the liquidus temperature. Contrasting to the conventional microstructure usually found in the Nb-Si eutectic alloy, the microstructure of the undercooled sample is divided into the fine and coarse regions. The most commonly observed microstructure is Nb+Nb5Si3, and the Nb3Si phase is not be found. The change of coarseness of microstructure is due to different cooling rates during and after recalescence. The large undercooling is sufficient to completely bypass the high temperature phase field.
Resumo:
Table of Contents
1 | Introduction | 1 |
1.1 | What is an Adiabatic Shear Band? | 1 |
1.2 | The Importance of Adiabatic Shear Bands | 6 |
1.3 | Where Adiabatic Shear Bands Occur | 10 |
1.4 | Historical Aspects of Shear Bands | 11 |
1.5 | Adiabatic Shear Bands and Fracture Maps | 14 |
1.6 | Scope of the Book | 20 |
2 | Characteristic Aspects of Adiabatic Shear Bands | 24 |
2.1 | General Features | 24 |
2.2 | Deformed Bands | 27 |
2.3 | Transformed Bands | 28 |
2.4 | Variables Relevant to Adiabatic Shear Banding | 35 |
2.5 | Adiabatic Shear Bands in Non-Metals | 44 |
3 | Fracture and Damage Related to Adiabatic Shear Bands | 54 |
3.1 | Adiabatic Shear Band Induced Fracture | 54 |
3.2 | Microscopic Damage in Adiabatic Shear Bands | 57 |
3.3 | Metallurgical Implications | 69 |
3.4 | Effects of Stress State | 73 |
4 | Testing Methods | 76 |
4.1 | General Requirements and Remarks | 76 |
4.2 | Dynamic Torsion Tests | 80 |
4.3 | Dynamic Compression Tests | 91 |
4.4 | Contained Cylinder Tests | 95 |
4.5 | Transient Measurements | 98 |
5 | Constitutive Equations | 104 |
5.1 | Effect of Strain Rate on Stress-Strain Behaviour | 104 |
5.2 | Strain-Rate History Effects | 110 |
5.3 | Effect of Temperature on Stress-Strain Behaviour | 114 |
5.4 | Constitutive Equations for Non-Metals | 124 |
6 | Occurrence of Adiabatic Shear Bands | 125 |
6.1 | Empirical Criteria | 125 |
6.2 | One-Dimensional Equations and Linear Instability Analysis | 134 |
6.3 | Localization Analysis | 140 |
6.4 | Experimental Verification | 146 |
7 | Formation and Evolution of Shear Bands | 155 |
7.1 | Post-Instability Phenomena | 156 |
7.2 | Scaling and Approximations | 162 |
7.3 | Wave Trapping and Viscous Dissipation | 167 |
7.4 | The Intermediate Stage and the Formation of Adiabatic Shear Bands | 171 |
7.5 | Late Stage Behaviour and Post-Mortem Morphology | 179 |
7.6 | Adiabatic Shear Bands in Multi-Dimensional Stress States | 187 |
8 | Numerical Studies of Adiabatic Shear Bands | 194 |
8.1 | Objects, Problems and Techniques Involved in Numerical Simulations | 194 |
8.2 | One-Dimensional Simulation of Adiabatic Shear Banding | 199 |
8.3 | Simulation with Adaptive Finite Element Methods | 213 |
8.4 | Adiabatic Shear Bands in the Plane Strain Stress State | 218 |
9 | Selected Topics in Impact Dynamics | 229 |
9.1 | Planar Impact | 230 |
9.2 | Fragmentation | 237 |
9.3 | Penetration | 244 |
9.4 | Erosion | 255 |
9.5 | Ignition of Explosives | 261 |
9.6 | Explosive Welding | 268 |
10 | Selected Topics in Metalworking | 273 |
10.1 | Classification of Processes | 273 |
10.2 | Upsetting | 276 |
10.3 | Metalcutting | 286 |
10.4 | Blanking | 293 |
Appendices | 297 | |
A | Quick Reference | 298 |
B | Specific Heat and Thermal Conductivity | 301 |
C | Thermal Softening and Related Temperature Dependence | 312 |
D | Materials Showing Adiabatic Shear Bands | 335 |
E | Specification of Selected Materials Showing Adiabatic Shear Bands | 341 |
F | Conversion Factors | 357 |
References | 358 | |
Author Index | 369 | |
Subject Index | 375 |
Resumo:
Some factors that affect the experimental results in nanoindentation tests such as the contact depth, contact area, load and loading duration are analyzed in this article. Combining with the results of finite element numerical simulation, we find that the creep property of the tested material is one of the important factors causing the micron indentation hardness descending with the increase of indentation depth. The analysis of experimental results with different indentation depths demonstrates that the hardness decrease can be bated if the continuous stiffness measurement technique is not adopted; this indicates that the test method itself may also be one of the factors causing the hardness being descended.
Resumo:
Up-converting phosphor technology (UPT)-based lateral-flow immunoassay has been developed for quantitative detection of Yersinia pestis rapidly and specifically. In this assay, 400 nm up-converting phosphor particles were used as the reporter. A sandwich immumoassay was employed by using a polyclonal antibody against F1 antigen of Y. pestis immobilized on the nitrocellulose membrane and the same antibody conjugated to the UPT particles. The signal detection of the strips was performed by the UPT-based biosensor that could provide a 980 nm IR laser to excite the phosphor particles, then collect the visible luminescence emitted by the UPT particles and finally convert it to the voltage as a signal. V-T and V-c stand for the multiplied voltage units for the test and the control line, respectively, and the ratio V-T/V-C is directly proportional to the number of Y pestis in a sample. We observed a good linearity between the ratio and log CFU/ml of Y pestis above the detection limit, which was approximately 10(4) CFU/mI. The precision of the intra- and inter-assay was below 15% (coefficient of variation, CV). Cross-reactivity with related Gram-negative enteric bacteria was not found. The UPT-LF immunoassay system presented here takes less than 30 min to perform from the sample treatment to the data analysis. The current paper includes only preliminary data concerning the biomedical aspects of the assay, but is more concentrated on the technical details of establishing a rapid manual assay using a state-of-the-art label chemistry. (c) 2006 Elsevier B.V. All rights reserved.