119 resultados para Range extension

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The behaviors of a crack in body-centered-cubic metal Mo under different loading modes were studied using the molecular dynamics method. Dislocation emission was observed near the crack tip in response to mode II loading with theta = 0 degrees in which theta is the inclination angle of the slip plane with respect to the crack plane, and two full dislocations were observed at the stress level of K-II = 1.17 MPa m(1/2) without any evidence of crack extension. Within the range of 0 degrees less than or equal to theta less than or equal to 45 degrees, crack extension was observed in response to mode I loading, and the effect of crystal orientation on the crack propagation was studied, The crack propagated along the [111] slip direction without any evidence of dislocations emission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A generalized scattering matrix formalism is constructed to elucidate the interplay of electron resonance, coherence, dephasing, inelastic scattering, and heterogeneity, which play important roles in the physics of long-range electron transfer/transport. The theory consists of an extension of the standard Buttiker phase-breaking model and an analytical expression of the electron transmission coefficient for donor-bridge-acceptor systems with arbitrary length and sequence. The theory incorporates the following features: Dephasing-assisted off-resonance enhancement, inelasticity-induced turnover, resonance enhancement and its dephasing-induced suppression, dephasing-induced smooth superexchange-hopping transition, and heterogeneity effects. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Covering the solid lattice with a finite-element mesh produces a coarse-grained system of mesh nodes as pseudoatoms interacting through an effective potential energy that depends implicitly on the thermodynamic state. Use of the pseudoatomic Hamiltonian in a Monte Carlo simulation of the two-dimensional Lennard-Jones crystal yields equilibrium thermomechanical properties (e.g., isotropic stress) in excellent agreement with ``exact'' fully atomistic results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In addition to the layer thickness and effective Young’s modulus, the impact of the kinematic assumptions, interfacial condition, in-plane force, boundary conditions, and structure dimensions on the curvature of a film/substrate bilayer is examined. Different models for the analysis of the bilayer curvature are compared. It is demonstrated in our model that the assumption of a uniform curvature is valid only if there is no in-plane force. The effects of boundary conditions and structure dimensions, which are not-fully-included in previous models are shown to be significant. Three different approaches for deriving the curvature of a film/substrate bilayer are presented, compared, and analyzed. A more comprehensive study of the conditions regarding the applicability of Stoney’s formula and modified formulas is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deformation twinning near a crack tip is observed in b.c.c. metal Mo based on molecular dynamics simulation at temperature T = 50 K and loading rate (K) over dot(II) = 0.0706 MPa m(1/2)/ps. The defor mation twinning is closely controlled by both the crystal geometry orientation and the stress distribution. The width of the deformation twin band is affected by the distance between the upper and lower crack surfaces. The twin plane and twin direction are (<1(1)over bar>2) and [(1) over bar 11], respectively. The initial crack extension occurs in the deformation twin region near the crack tip. The simulation shows that the extension direction of the crack is changed as the crack propagates over the twinning boundary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides a numerical approach on achieving the limit equilibrium method for 3D slope stability analysis proposed in the theoretical part of the previous paper. Some programming techniques are presented to ensure the maneuverability of the method. Three examples are introduced to illustrate the use of this method. The results are given in detail such as the local factor of safety and local potential sliding direction for a slope. As the method is an extension of 2D Janbu's generalized procedure of slices (GPS), the results obtained by GPS for the longitudinal sections of a slope are also given for comparison with the 3D results. A practical landslide in Yunyang, the Three Gorges, of China, is also analyzed by the present method. Moreover, the proposed method has the advantages and disadvantages of GPS. The problem frequently encountered in calculation process is still about the convergency, especially in analyzing the stability of a cutting corner. Some advice on discretization is given to ensure convergence when the present method is used. However, the problem about convergency still needs to be further explored based on the rigorous theoretical background.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been shown in CA simulations and data analysis of earthquakes that declustered or characteristic large earthquakes may occur with long-range stress redistribution. In order to understand long-range stress redistribution, we propose a linear-elastic but heterogeneous-brittle model. The stress redistribution in the heterogeneous-brittle medium implies a longer-range interaction than that in an elastic medium. Therefore, it is surmised that the longer-range stress redistribution resulting from damage in heterogeneous media may be a plausible mechanism governing main shocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P-selectin, a 70-nm-long cellular adhesive molecule, possesses elastic and extensible properties when neutrophils roll over the activated endotheliam of blood vessel in inflammatory reaction. Transient formation and dissociation of P-selectin/ligand bond on applied force of blood flow induces the extension of P-selectin and relevant ligands. Steered molecular dynamics simulations were performed to stretch a single P-selectin construct consisting of a lectin (Lec) domain and an epithelial growth factor (EGF)-like domain, where P-selectin construct was forced to extend in water with pulling velocities of 0.005-0.05 nm/ps and with constant forces of 1000-2500 pN respectively. Resulting force-extension profiles exhibited a dual-peak pattern on various velocities, while both plateaus and shoulders appeared in the extension-time profiles on various forces. The force or extension profiles along stretching pathways were correlated to the conformational changes, suggesting that the structural collapses of P-selectin Lec/EGF domains were mainly attributed to the burst of hydrogen bonds within the major beta sheet of EGF domain and the disruptions of two hydrophobic cores of Lee domain. This work furthers the understanding of forced dissociation of P-selectin/ligand bond.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a conceptual model for the in-plane physics of an earthquake fault. The model employs cellular automaton techniques to simulate tectonic loading, earthquake rupture, and strain redistribution. The impact of a hypothetical crustal elastodynamic Green's function is approximated by a long-range strain redistribution law with a r(-p) dependance. We investigate the influence of the effective elastodynamic interaction range upon the dynamical behaviour of the model by conducting experiments with different values of the exponent (p). The results indicate that this model has two distinct, stable modes of behaviour. The first mode produces a characteristic earthquake distribution with moderate to large events preceeded by an interval of time in which the rate of energy release accelerates. A correlation function analysis reveals that accelerating sequences are associated with a systematic, global evolution of strain energy correlations within the system. The second stable mode produces Gutenberg-Richter statistics, with near-linear energy release and no significant global correlation evolution. A model with effectively short-range interactions preferentially displays Gutenberg-Richter behaviour. However, models with long-range interactions appear to switch between the characteristic and GR modes. As the range of elastodynamic interactions is increased, characteristic behaviour begins to dominate GR behaviour. These models demonstrate that evolution of strain energy correlations may occur within systems with a fixed elastodynamic interaction range. Supposing that similar mode-switching dynamical behaviour occurs within earthquake faults then intermediate-term forecasting of large earthquakes may be feasible for some earthquakes but not for others, in alignment with certain empirical seismological observations. Further numerical investigation of dynamical models of this type may lead to advances in earthquake forecasting research and theoretical seismology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactions between different scales in turbulence were studied starting from the incompressible Navier-Stokes equations. The integral and differential formulae of the short-range viscous stresses, which express the short-range interactions between contiguous scales in turbulence, were given. A concept of the resonant-range interactions between extreme contiguous scales was introduced and the differential formula of the resonant-range viscous stresses was obtained. The short- and resonant-range viscous stresses were applied to deduce the large-eddy simulation (LES) equations as well as the multiscale equations, which are approximately closed and do not contain any empirical constants or relations. The properties and advantages of using the multiscale equations to compute turbulent flows were discussed. The short-range character of the interactions between the scales in turbulence means that the multiscale simulation is a very valuable technique for the calculation of turbulent flows. A few numerical examples were also given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The similarity criterion for water flooding reservoir flows is concerned with in the present paper. When finding out all the dimensionless variables governing this kind of flow, their physical meanings are subsequently elucidated. Then, a numerical approach of sensitivity analysis is adopted to quantify their corresponding dominance degree among the similarity parameters. In this way, we may finally identify major scaling law in different parameter range and demonstrate the respective effects of viscosity, permeability and injection rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The similarity criterion for water flooding reservoir flows is concerned with in the present paper. When finding out all the dimensionless variables governing this kind of flow, their physical meanings are subsequently elucidated. Then, a numerical approach of sensitivity analysis is adopted to quantify their corresponding dominance degree among the similarity parameters. In this way, we may finally identify major scaling law in different parameter range and demonstrate the respective effects of viscosity, permeability and injection rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Material potential energy is well approximated by '' pair-functional '' potentials. During calculating potential energy, the orientational and volumetric components have been derived from pair potentials and embedding energy, respectively. Slip results in plastic deformation, and slip component has been proposed accordingly. Material is treated as a component assembly, and its elastic, plastic and damage properties are reflected by different components respectively. Material constitutive relations are formed by means of assembling these three kinds of components. Anisotropy has been incorporated intrinsically via the concept of component. Theoretical and numerical results indicate that this method has the capacity of reproducing some results satisfactorily, with the advantages of physical explicitness, etc. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pure diffusion process has been often used to study the crystal growth of a binary alloy in the microgravity environment. In the present paper, a geometric parameter, the ratio of the maximum deviation distance of curved solidification and melting interfaces from the plane to the radius of the crystal rod, was adopted as a small parameter, and the analytical solution was obtained based on the perturbation theory. The radial segregation of a diffusion dominated process was obtained for cases of arbitrary Peclet number in a region of finite extension with both a curved solidification interface and a curved melting interface. Two types of boundary conditions at the melting interface were analyzed. Some special cases such as infinite extension in the longitudinal direction and special range of Peclet number were reduced from the general solution and discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The g-jitter influence on thermocapillary convection and critical Marangoni number in a liquid bridge of half-floating rone was discussed in the low frequency range of 0.4 to 1.5 Hz in a previous paper. This paper extended the experiments to the intermediate frequency range of 2 to 18 Hz, which htrs often been recorded as vibration environment of spacecrafts. The experiment was completed on the deck of a vibration machine, which gave a periodical applied acceleration to simulate the effects of g-jitter. The experimental results in the intermediate frequency range are different from that in the low frequency range. The velocity field and the shape of the free surface have periodical fluctuations in response to g-jitter. The amplitude of the periodical varying part of the temperature response decreases obviously with increasing frequency of g-jitter and vanishes almost when the frequency of g-jitter is high enough. The critical Marangoni number is defined to describe the transition from a periodical convection in response to g-jitter to an oscillatory convection due to internal instability, and will increase with increasing g-jitter frequency. According to the spectral analysis, it can be found that the oscillatory part of temperature is a superposition of two harmonic waves if the Marangoni number is larger than a critical value.