66 resultados para Radio noise
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
It is well known that noise and detection error can affect the performances of an adaptive optics (AO) system. Effects of noise and detection error on the phase compensation effectiveness in a dynamic AO system are investigated by means of a pure numerical simulation in this paper. A theoretical model for numerically simulating effects of noise and detection error in a static AO system and a corresponding computer program were presented in a previous article. A numerical simulation of effects of noise and detection error is combined with our previous numeral simulation of a dynamic AO system in this paper and a corresponding computer program has been compiled. Effects of detection error, readout noise and photon noise are included and investigated by a numerical simulation for finding the preferred working conditions and the best performances in a practical dynamic AO system. An approximate model is presented as well. Under many practical conditions such approximate model is a good alternative to the more accurate one. A simple algorithm which can be used for reducing the effect of noise is presented as well. When signal to noise ratio is very low, such method can be used to improve the performances of a dynamic AO system.
Resumo:
The first-passage time of Duffing oscillator under combined harmonic and white-noise excitations is studied. The equation of motion of the system is first reduced to a set of averaged Ito stochastic differential equations by using the stochastic averaging method. Then, a backward Kolmogorov equation governing the conditional reliability function and a set of generalized Pontryagin equations governing the conditional moments of first-passage time are established. Finally, the conditional reliability function, and the conditional probability density and moments of first-passage time are obtained by solving the backward Kolmogorov equation and generalized Pontryagin equations with suitable initial and boundary conditions. Numerical results for two resonant cases with several sets of parameter values are obtained and the analytical results are verified by using those from digital simulation.
Resumo:
A procedure for designing the optimal bounded control of strongly non-linear oscillators under combined harmonic and white-noise excitations for minimizing their first-passage failure is proposed. First, a stochastic averaging method for strongly non-linear oscillators under combined harmonic and white-noise excitations using generalized harmonic functions is introduced. Then, the dynamical programming equations and their boundary and final time conditions for the control problems of maximizing reliability and of maximizing mean first-passage time are formulated from the averaged Ito equations by using the dynamical programming principle. The optimal control law is derived from the dynamical programming equations and control constraint. Finally, the conditional reliability function, the conditional probability density and mean of the first-passage time of the optimally controlled system are obtained from solving the backward Kolmogorov equation and Pontryagin equation. An example is given to illustrate the proposed procedure and the results obtained are verified by using those from digital simulation. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
An efficient method for solving the spatially inhomogeneous Boltzmann equation in a two-term approximation for low-pressure inductively coupled plasmas has been developed. The electron distribution function (EDF), a function of total electron energy and two spatial coordinates, is found self-consistently with the static space-charge potential which is computed from a 2D fluid model, and the rf electric field profile which is calculated from the Maxwell equations. The EDF and the spatial distributions of the electron density, potential, temperature, ionization rate, and the inductive electric field are calculated and discussed. (C) 1996 American Institute of Physics.
Resumo:
As an improvement of resolution of observations, more and more radio galaxies with radiojets have been identified and many fine structures in the radio jets yielded. In the presentpaper, the two-dimensional magnetohydrodynamical theory is applied to the analysis of themagnetic field configurations in the radio jefs. Two-dimensional results not only are con-sistent theoretically, but also explain the fine structures of observations. One of the theo-retical models is discussed in detail, and is in good agreement as compared with the observedradio jets of NGC6251. The results of the present paper also show that the magneticfields in the radio jets are mainly longitudinal ones and associate with the double sources ofQSOs if the magnetic field of the central object is stronger; the fields in the radio jets aremainly transverse ones and associate with the double sources of radio galaxies if the fieldof the central object is weaker. The magnetic field has great influence on the morphol-ogy and dynamic process.
Resumo:
The two-dimensional accelerating theory about solar wind is applied to the study of theaccelerating process of jet beam in the radio galaxy. The flowing features are given with theanalytic method, and the basic flow is along the direction of the jet beam. The mechanism ofacceleration from subsonic to supersonic flow is discussed. At the same time, some fine struc-tures about the double sources in the radio galaxy are explained.
Resumo:
The hybrid method of large eddy simulation (LES) and the Lighthill analogy is being developed to compute the sound radiated from turbulent flows. The results obtained from the hybrid method are often contaminated by the absence of small scales in LES, since the energy level of sound is much smaller than that of turbulent flows. Previous researches investigate the effects of subgrid sacle (SGS) eddies on the frequency spectra of sound radiated by isotropic turbulence and suggest a SGS noise model to represent the SGS contributions to the frequency spectra. Their investigations are conducted in physical space and are unavoidably influenced by boundary conditions. In this paper, we propose to perform such calculations in Fourier space so that the effects of boundary conditions can be correctly treated. Posteriori tests are carried out to investigate the SGS contribution to the sound. The results obtained recover the -7/2 law within certain wave-number ranges, but under-estimate the amplitudes of the frequency spectra. The reason for the underestimation is also discussed.
Resumo:
Many biological systems can switch between two distinct states. Once switched, the system remains stable for a period of time and may switch back to its original state. A gene network with bistability is usually required for the switching and stochastic effect in the gene expression may induce such switching. A typical bistable system allows one-directional switching, in which the switch from the low state to the high state or from the high state to the low state occurs under different conditions. It is usually difficult to enable bi-directional switching such that the two switches can occur under the same condition. Here, we present a model consisting of standard positive feedback loops and an extra negative feedback loop with a time delay to study its capability to produce bi-directional switching induced by noise. We find that the time delay in the negative feedback is critical for robust bi-directional switching and the length of delay affects its switching frequency.
Resumo:
The resolution and classical noise in ghost imaging with a classical thermal light are investigated theoretically. For ghost imaging with a Gaussian Schell model source, the dependences of the resolution and noise on the spatial coherence of the source and the aperture in the imaging system are discussed and demonstrated by using numerical simulations. The results show that an incoherent source and a large aperture will lead to a good image quality and small noise.
Resumo:
Based on the dressed-atom approach, we discuss a two-dimensional (2D) radio-frequency trap for neutral atoms, in which the trap potential derives from the magnetic-dipole transition among the hyperfine Zeeman sublevels. By adjusting the detuning of the radiation from resonance, the trapping states will be changed predominantly from the bare states Of m(FgF) > 0 to other states of m(FgF) < 0, where m(F) and g(F) are the quantum numbers of Zeeman sublevels and the Lande factor, respectively. This character contrasts finely with that, of a static magnetic, trap that can only trap or guide the states of m(FgF) > 0. In comparison to the optical field, the radio-frequency trap eliminates the spontaneous emission heating of the atoms. Unlike other oscillating traps reported in the e literature, the configuration of the radio-frequency trap is suitable for realization of a miniature magnetic guide.
Resumo:
We propose a surface planar ion chip which forms a linear radio frequency Paul ion trap. The electrodes reside in the two planes of a chip, and the trap axis is located above the chip surface. Its electric field and potential distribution are similar to the standard linear radio frequency Paul ion trap. This ion trap geometry may be greatly meaningful for quantum information processing.
Resumo:
We study the behaviour of atoms in a field with both static magnetic field and radio frequency (rf) magnetic field. We calculate the adiabatic potential of atoms numerically beyond the usually rotating wave approximation, and it is pointed that there is a great difference between using these two methods. We find the preconditions when RWA is valid. In the extreme of static field almost parallel to rf field, we reach an analytic formula. Finally, we apply this method to Rb-87 and propose a guide based on an rf field on atom chip.
Resumo:
单纵模掺铒光纤激光器在光通信和光传感等方面有着广泛的应用前景。设计了一种新型的光纤激光器,在光纤环形镜中嵌入未抽运的掺铒光纤作为可饱和吸收体以抑制多纵模,用光纤环谐振腔作为滤波器抑制拍频噪声,用光纤光栅作为波长选择器件,最终得到了单纵模输出并消除了拍频噪声。使用零拍法测量其线宽小于频谱仪的低频极限5kHz。实验结果证明了可饱和吸收体和光纤环的功能。