4 resultados para Rab

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rab蛋白家族属于小分子GTP结合蛋白家族Ras超家族中最大的亚家族,主要在囊泡运输中起作用。实验运用PCR、RT-PCR等技术,从八肋游仆虫中克隆到一种新的rab基因。序列分析结果表明:在大核中,该基因全长884 bp,除去两端的端粒与非编码区,该基因在大核中由723 bp组成。从小核中克隆相应的基因片段,此基因片段序列与大核中序列一致,表明该基因在小核中无内部删除序列的存在。通过RT-PCR,从mRNA获得的该基因的开放读框为663 bp,表明该基因在转录过程中有内含子的删除。大核基因序列和cDNA序

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rab proteins belong to the largest family of the Ras superfamily of small GTPase that play an important role in intracellular vesicular traffic. So far, almost 60 members of Rab family have been identified in mammalian cells. To further study the diversity and function of Rab protein in evolution, unicellular protozoa ciliates, Euplotes octocarinatus, were used in this study, Rab genes were screened by PCR method from macronuclear DNA of E. octocarinatus. Sixteen Rab genes were obtained. They share 87.6 - 99.5% identities. Highly conserved GTP-binding domains were found. There are some hot regions that diverse sharply in these genes as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

小G蛋白(small GTPases)是真核生物中广泛存在的一类调节各种生命活动的信号分子。根据结构与功能的不同,小G蛋白家族成员可分成五个亚家族,分别为Ras,Rab,Rho,Arf和Ran。五类小G蛋白通过其活化态(GTP结合态)和非活化态(GDP结合态)的相互转换行使着各种功能。Ras GTPases在酵母和哺乳动物中调节细胞增殖过程; Rho GTPases调控肌动蛋白重组过程,并参与MAP 激酶的细胞信号转导过程等; Rab GTPases和Arf GTPases分别在膜转运过程中起着不同的重要作用;而Ran GTPases则在核孔位置调节着蛋白和RNA分子的运输过程。 小G蛋白附属蛋白调节着小G蛋白活化态与非活化态之间的转换,其中鸟核苷酸交换因子(guanine nucleotide exchange factors, GEFs)可以催化小G蛋白转换为GTP结合形式,即活化态;而GTPase 激活蛋白(GTPase-activating proteins, GAPs)和小G蛋白结合蛋白(small GTPases binding proteins)可以激活小G蛋白自身的水解活性,从而将其转变成非活化态形式。 相比其它小G蛋白,Ran GTPases及其附属蛋白在真核生物中的研究相对较少。已有的成果表明它们主要在核质运输过程中及对相应的信号转导途径起调节作用。而针对Ran GTPases及其附属蛋白在真核生物尤其是高等植物个体发育过程中的作用,目前报道还很少。 为了揭示Ran结合蛋白(Ran binding protein, RanBP)在植物发育过程中的作用,本文通过转基因手段对其功能进行 了研究。在此之前,本实验室已从小麦cDNA文库中成功克隆Ran结合蛋白基因:TaRanBP。该基因cDNA全长1035 bp,编码207个氨基酸。通过农杆菌介导叶圆片法,分别用正义、反义及TaRanBP与GFP融合蛋白等表达载体转化烟草,并成功获得转基因植株。亚细胞定位观察发现TaRanBP蛋白主要定位于细胞质内,尤其是在核膜附近富集。生理学和细胞学等方面的研究分析发现,TaRanBP基因在烟草个体发育过程中产生重要作用。过量表达TaRanBP基因的转基因植株在一定数量上表现出愈合的花冠筒上出现不同程度开裂,花冠筒上有附生舌状花瓣,及带有花瓣状颜 色的花萼等异常花表型。同时,转反义基因在一定程度上促进了转基因植株初生主根的生长(为对照烟草的2.3倍),而转正义基因烟草与对照烟草的初生主根长度差异不明显。用碘化丙锭(Propidium Iodide, PI)进行根部细胞染色。观察发现,不同的转基因烟草与对照烟草之间在根的各个不同形态区域的细胞大小差异不明显,推测根长的差异可能是由于整体细胞数目变化的原因导致。向重力性实验发现,转反义基因烟草幼苗较对照烟草的向重力性反应增加,而转正义基因的则表现为降低。激素吲哚乙酸(Indoleacetic Acid, IAA)的添加处理可以恢复转反义基因烟草的向重力性异常表型,而对转正义基因烟草几乎无影响。添加激动素(Kinetin, KT)的处理发现不同转基因烟草和对照烟草的向重力性均有减弱。观测后期,转正义基因的向重力敏感性较对照烟草得到恢复。测量不同转基因株系T1代幼苗鲜重,发现不同转基因烟草和对照烟草的幼苗鲜重动态变化在各个时间点有差异,且差异情况不尽相同。而不同转基因幼苗T1代幼苗可溶性蛋白含量较对照烟草有不同程度的下降。这种下降并没有影响转基因烟草的整体生长进程,开花期和结实情况与对照烟草相比也无明显变化。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ras 超家族蛋白是真核生物中普遍存在的一类小分子GTP 结合蛋白。它们 具有高度保守的GTP 结合结构域,根据序列结构和细胞功能被分为七个家族: Sar1、Arf、SRβ、Ran、Rab、Rho 和Ras。这些蛋白分别行使着真核生物特有的 细胞功能,诸如运输小泡的形成和转运(Sar1、Arf、Rab),胞质骨架的建成(Rho), 细胞核-胞质运输及核膜重建(Ran)等,其起源演化和真核细胞的起源密切相关。 本文利用生物信息学手段和分子生物学实验调查研究了原核生物和原生生物中 Ras 超家族蛋白同源物的存在情况,并进行了分子系统分析,对Ras 超家族蛋白 的起源演化问题进行了较为深入、系统的探讨。获得了以下结果和结论: 1)通过原核生物基因组的搜索和序列结构分析,在一些真细菌中首次鉴定 出了高度相似于真核生物Ras 超家族蛋白的原核生物同源物,且实验证明它们的 基因具有表达活性;在原细菌中的产甲烷菌和热原体中也发现有序列分歧较大的 同源物。并在更多的真细菌种类中鉴定出了更多的前人已报道的另一种小分子 GTP 结合蛋白—MglA。序列比对分析表明MglA 蛋白具有自己独特的序列特征, 与真核生物的Ras 超家族蛋白序列差异较大。进一步的分子系统分析显示:真核 生物Ras 超家族蛋白的七个家族中,Ran、Rab、Rho 和Ras 等四个家族聚在一 起,上述我们所鉴定的真细菌的Ras 超家族蛋白同源物则紧聚在其外围;真核生 物的另三个家族(Sar1、Arf、SRβ)聚成另一枝,并接着与产甲烷原细菌的的同 源物及真细菌的MglA 蛋白聚在一起。这些结果表明:Ras 超家族蛋白不是前人 所认为的为真核生物所特有,实际上在一些原核生物中就已产生;真核生物Ras 超家族蛋白的祖先也不太可能是前人所认为的为真细菌的MglA;真核生物Ras 超家族蛋白的七个家族可能有两种不同的起源:Ran、Rab、Rho 和Ras 等可能 来源于蓝细菌或蛋白菌,或二者的共同祖先,而Sar1、Arf 和SRβ 可能来源于产 甲烷原细菌,这也可能反映了真核细胞“融合起源”的历史。 2)通过搜索一些较为低等的单细胞真核生物——原生生物基因组中Ras 超 家族蛋白,并结合一系列其他处在不同进化地位真核生物的Ras 超家族蛋白进行 分析,发现Sar1、Arf、Rab 和Ran 家族的蛋白在真核生物中普遍存在,而SRβ、 Rho 和Ras 家族蛋白在有些真核生物中未找到。根据各家族蛋白在真核生物中的分布情况推测在真核生物的最近共同祖先中存在的Ras 超家族蛋白可能有下列 两种情况:(1)最近的共同祖先已经具有了所有七个家族的蛋白,并且至少有 11 个成员:1 个Sar1、1 个SRβ、3 个Arf(Arf1、Arl1、Arl2)、3 个RabRab1、 Rab6、Rab11)、1 个Ran、1 个Rho(Rac)和1 个Ras(RheB)。因而,部分真 核生物中缺少SRβ、Rho 和Ras 家族蛋白很可能是因基因丢失所致。植物中Ras 家族蛋白的缺少应该是由于在进化早期,其祖先绿藻丢失了单个Ras 家族蛋白基 因所致;(2)根据Cavalier-Smith 的真核生物划分为单鞭毛(变形虫类、真菌和 后生动物)和双鞭毛(藻类、植物和除变形虫外的原生动物)两大类的分类观点, 真核生物最近的共同祖先可能只具有除Ras 家族而外的六个家族的成员,而Ras 家族蛋白则是在此两大类群分化以后在单鞭毛类生物中才产生的,多数双鞭毛类 生物如原生动物、绿藻和植物中没有Ras 的情况应该是一种祖征,而个别双鞭毛 类生物如红藻具有的Ras 家族蛋白则很可能是从单鞭毛类生物那里水平基因转 移而来的。至于SRβ 和Rho 家族蛋白在部分物种中的缺少,则还是可能因为基 因丢失所致。此外,变形虫类生物中大量的Ras 超家族蛋白提示基因组的大小或 进化地位的高低并不是Ras 超家族蛋白成员多少的决定性因素,而细胞相应生理 活动的需求才是家族成员增多的关键。