10 resultados para RNase H
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Cloning and characterization of an RNase-related protein gene preferentially expressed in rice stems
Cloning and Characterization of an RNase-Related Protein Gene Preferentially Expressed in Rice Stems
Resumo:
Pancreatic RNase genes implicated in the adaptation of the colobine monkeys to leaf eating have long intrigued evolutionary biologists since the identification of a duplicated RNASE1 gene with enhanced digestive efficiencies in Pygathrix nemaeus. The recent emergence of two contrasting hypotheses, that is, independent duplication and one-duplication event hypotheses, make it into focus again. Current understanding of Colobine RNASE1 gene evolution of colobine monkeys largely depends on the analyses of few colobine species. The present study with more intensive taxonomic and character sampling not only provides a clearer picture of Colobine RNASE1 gene evolution but also allows to have a more thorough understanding about the molecular basis underlying the adaptation of Colobinae to the unique leaf-feeding lifestyle. The present broader and detailed phylogenetic analyses yielded two important findings: 1) All trees based on the analyses of coding, noncoding, and both regions provided consistent evidence, indicating RNASE1 duplication occurred after Asian and African colobines speciation, that is, independent duplication hypothesis; 2) No obvious evidence of gene conversion in RNASE1 gene was found, favoring independent evolution of Colobine RNASE1 gene duplicates. The conclusion drawn from previous studies that gene conversion has played a significant role in the evolution of Colobine RNASE1 was not supported. Our selective constraint analyses also provided interesting insights, with significant evidence of positive selection detected on ancestor lineages leading to duplicated gene copies. The identification of a handful of new adaptive sites and amino acid changes that have not been characterized previously also provide a necessary foundation for further experimental investigations of RNASE1 functional evolution in Colobinae.
Resumo:
External guide sequence (EGS) technique, a branch of ribozyme strategy, can be enticed to cleave the target mRNA by forming a tRNA-like structure. In the present study, no tail gene (ntl), a key gene participating in the formation of normal tail, was used as a target for ribonuclease (RNase) P-mediated gene disruption in zebrafish in vivo. Transient expression of pH1-m3/4 ntl-EGS or pH1-3/4 ntl-EGS produced the full no tail phenotype at long-pec stage in proportion as 24 or 35%, respectively. As is expected that the full-length ntl mRNA of embryos at 50% epiboly stage decreased relative to control when injected the embryos with 3/4 EGS or m3/4 EGS RNA. Interestingly, ntl RNA transcripts, including the cleaved by EGS and the untouched, increased. Taken together, these results indicate that EGS strategy can work in zebrafish in vivo and becomes a potential tool for degradation of targeted mRNAs.
Resumo:
Aerolysin is a toxin (protein in nature) secreted by the strains of Aeromonas spp. and plays all important role in the virulence of Aeromonas strains. It has also found several applications such as for detection of glycosylphosphatidylinositol (GPI)-anchored proteins etc. A. hydrophila is a ubiquitous Gram-negative bacterium which causes frequent harm to the aquaculture. To obtain a significant amount of recombinant aerolysin in the active form, in this study, we expressed the aerolysin in E. Coli Under the control of T7 RNase promoter. The coding region (AerA-W) of the aerA gene of A. hydrophila XS91-4-1. excluding partial coding region of the signal peptide was cloned into the vector pET32a and then transformed into E. coli b121. After optimizing the expression conditions, the recombinant protein AerA-W was expressed in a soluble form and purified using His-Bind resin affinity chromatography. Recombinant aerolysin showed hemolytic activity in the agar diffusive hemolysis test. Western blot analysis demonstrated good antigenicity of the recombinant protein.
Resumo:
Background: Some triploid and tetraploid clones have been identified in the gynogenetic gibel carp, Carassius auratus gibelio Bloch, by karyotypic and cytologic analyses over many years. Further, 5-20% males and karyotypic diversity have been found among their natural and artificial populations. However, the DNA contents and the relation to their ploidy level and chromosome numbers have not been ascertained, and whether normal meiosis occurs in spermatogenesis needs to be determined in the different clones. Methods: The sampled blood cells or sperms were mixed with blood cells from chicken or individual gibel carp and fixed in 70% pre-cooled ethanol overnight at 4degreesC. The mixed cell pellets were washed 2-3 times in 1x phosphate buffered saline and then resuspended in the solution containing 0.5% pepsin and 0.1 M HCl. DNA was stained with propidium iodide solution (40 mug/mL) containing 4 kU/ml RNase. The measurements of DNA contents were performed with Phoenix Flow Systems. Results: Triploid clones A, E, F, and P had almost equal DNA content, but triploid clone D had greater DNA content than did the other four triploid clones. DNA content of clone M (7.01 +/- 0.15 pg/nucleus) was almost equal to the DNA content of clone D (5-38 +/- 0.06 pg/nucleus) plus the DNA content of common carp sperm (1.64 +/- 0.02 pg/nucleus). The DNA contents of sperms from clones A, P, and D were half of their blood cells, suggesting that normal meiosis occurs in spermatogenesis. Conclusions: Flow cytometry is a powerful method to analyze genetic heterogeneity and ploidy level among different gynogenetic clones of polyploid gibel carp. Through this study, four questions have been answered. (a) The DNA content correlation among the five triploid clones and one multiple tetraploid clone was revealed in the gibel carp, and the contents increased with not only the ploidy level but also the chromosome number. (b) Mean DNA content was 0.052 pg in six extra chromosomes of clone D, which was higher than that of each chromosome in clones A, E, F, and P (about 0.032 pg/ chromosome). This means that the six extra chromosomes are larger chromosomes. (c) Normal meiosis occurred during spermatogenesis of the gibel carp, because DNA contents of the sperms from clones A, P, and D were almost half of that in their blood cells. (d) Multiple tetraploid clone M (7.01 +/- 0.15 pg/nucleus) contained the complete genome of clone D (5.38 +/- 0.06 pg/nucleus) and the genome of common carp sperm (1.64 +/- 0.02 pg/nucleus). Cytometry Part A 56A:46-52, 2003. (C) 2003 Wiley-Liss, Inc.
Resumo:
核酸为生命的最基本物质之一,是生物体遗传信息的携带者,在生长、遗传、变异等一系列重大生命现象中起决定性的作用。以核酸作为新药设计的靶分子,越来越受到人们的广泛重视。然而,不像其它靶分子如蛋白质、受体等具有特定的结构和功能,核酸结构在很多情况下是同源的,而且联系到很多人体正常的生理功能;能够与核酸结合的药物又往往不具有序列选择性,这就带来明显的毒副作用。因此,寻找和发现一些与疾病相关的核酸的特殊结构,并筛选对其有特异性结合能力的小分子,是以核酸为靶的药物研究的一个重要课题。 近年来,随着纳米科学技术的兴起,以核酸作为纳米体系的结构材料开始受到人们的广泛关注。作为一类特殊的线性高分子,核酸具有化学性质稳定,结构丰富且可控,良好的刚性和柔性,精确识别,高度生物相容性,合成方便等诸多优点,是一类优良的结构材料。目前核酸相关的纳米组装结构和器件研究还处于起步阶段,但是已经呈现出良好的发展前景。 本论文主要针对核酸特殊结构的分子识别及核酸相关功能纳米结构的设计这两方面展开了研究,全文由以下两大部分组成: 第一部分通过光谱学和生物化学等手段,研究了小分子对不同核酸结构的识别作用。借助于竞争平衡透析技术,发现一类恶嗪染料(oxazine dyes)能够与多种结构核酸结合。热变性及光谱实验结果表明,oxazine染料能够诱导杂合体三链核酸poly(rA):2poly(dT)的形成,并强烈地稳定其结构,其中以cresyl violet作用最强,是迄今发现的化合物中最强的。进一步研究发现,此类化合物以嵌插方式与杂合体三链核酸结合。RNase H酶切实验表明,杂合体三链核酸的形成能够强烈地抑制RNase H核酸酶的活性。研究了oxazine-170与三链核酸poly(dA):2poly(dT)及poly(rA):2poly(rU)的相互作用,发现oxazine-170能够强烈稳定三链DNA poly(dA):2poly(dT)的结构,而对相应双链DNA不具稳定作用;对三链RNA poly(rA):2poly(rU)及相应的双链RNA都有一定稳定作用,但作用不强。进一步研究发现,oxazine-170能够以两种结合方式与核酸结合:嵌插方式和外部静电堆积作用。研究了oxazine-170及cresyl violet与单链核酸的相互作用。研究发现oxazine-170能够序列特异性地与单链核酸poly(rA) 结合,CD光谱及AFM研究发现oxazine-170诱导poly(rA)形成新的二级结构。UV光谱、FL光谱及RLS研究发现poly(rA)促使oxazine 170形成H-aggregate,并以poly(rA)为模板自组装。而cresyl violet能够与单链核酸poly(rA)及poly(dA)结合,且采用不同的结合方式: cresyl violet能够与oxazine-170 类似地以poly(rA)为模板自组装;以嵌插方式与poly(dA)结合,并诱导其单链碱基堆积方式的改变。通过以上实验结果,我们进一步揭示了oxazine染料作为肿瘤细胞染色及光动力学治疗试剂的结构基础,对进一步设计、合成更加高效的抗肿瘤药物具有一定的指导意义。 第二部分中,我们尝试设计了几种基于核酸的纳米结构功能体系,并讨论了其相关应用。利用有机小分子coralyne能够诱导聚腺嘌呤序列反平行双链结构的形成,实现了一类新型的小分子诱导的纳米金组装结构。并以(dA)16功能化的金纳米粒子作为新型纳米探针,发展了一种简单的筛选单链核酸聚腺嘌呤序列结合分子的筛选方法。利用核酸限制性内切酶酶切位点回文序列的结构特点,设计了一种以DNA功能化的金纳米粒子组装体为酶切底物的比较通用的核酸限制性内切酶活力检测方法,并进一步用于甲基化酶活性检测及其抑制剂的筛选。基于单链DNA富胞嘧啶i-motif结构在不同pH值条件下的形成与解离,设计了一类质子驱动的DNA分子镊子,与基于链交换反应的DNA分子镊子相比,该体系更加简单,工作效率更高。随后,我们又通过合理设计,得到了两种分别能够结合与释放DNA和蛋白的分子镊子,为其应用做了一些探索。
Resumo:
本研究设计了一种新的RNA提取方法 ,解决了RNA提取时容易被降解和污染这一关键问题。通过加入Rnase抑制剂 ,消除了同外源RNase对RNA的降解 ,结合DNA难呈低盐溶液(140mmol·L -1NaCl)的原理 ,去除了DNA对RNA提取液的污染 ;先后使用酚和氯仿 ,有效地去除了蛋白质和酚类物的污染 ,利用抗氧化剂PVP和巯基乙醇 ,消除了内源酚类物质氧化变色对病毒RNA逆转录的影响。采用上述方法可以在4~5h内得到纯度高、含量大、完整性好的果树总RNA ,并获得了逆转录活性较强的病毒RNA ,同时使提取RNA的成本降低。这些方法对苹果、葡萄、桃、樱桃等果树总RNA的提取均适用。
Resumo:
Several specific non-covalent protein complexes were successfully observed by matrix assisted desorption ionization mass spectrometry(MALDI MS). The methods described in this paper include the matrixes use of sinapinic acid(SA) and 6-aza-2-thiothymine (ATT) in neutral pH solution, as well as the improvement of two-layer sample preparation method to achieve a high sensitivity detection of stable non-covalent complexes, Myoglobin-heme complex was found simultaneously with the sinapinic acid matrix in the various pH solution(pH=2 or pH=5), The RNase S complex showed a striking intensity at the first shot, which was decreased with more laser shots. Most importantly, the observation of specific non-covalent complex in the brome mosaic virus(BMV) coat proteins would open up a new possibility to investigate the assembly and disassembly of viral capsids.
Resumo:
用平板画线法从患病栉孔扇贝(Chlamys farreri)体内分离到了一种原核生物(简称QDP)。QDP可以在改进的液体培养基MEM(含2.2%NaCl,5%小牛血清)和脑心浸液(含2.2% NaCl)中生长;菌落在显微镜下(150×)为无色、透明的小点状;革兰氏染色阴性;菌体为圆形或近似圆形。QDP在发育过程中有两种状态,一种为未成熟阶段,直径小于100nm;另一种为成熟阶段,直径变化很大,最小约60nm,最大可达4µm以上。较小的个体有拟核、核糖体和新月状的空泡,未见细胞壁;较大的个体有细胞壁,胞内大部分被空泡充满,未见拟核和核糖体。栉孔扇贝组织超簿切片电镜观查证实QDP的存在。QDP的密度随着生长发育时间的不同而有所变化,繁殖高峰期密度较大。 建立了密度梯度离心结合滤膜过滤分离技术,优化人工培养条件。最适生长温度为23℃,最适生长pH值为7.4,最适生长盐度相当于细胞培养液所需的盐浓度(0.85%NaCl)。 提取的QDP核酸能被RNase A 降解,且没有检测到DNA。以PCR、RT-PCR扩增其16SrRNA基因序列片段,PCR反应没有扩增出扩增子,而RT-PCR则扩增出了16S rRNA基因序列片段,经测定其序列全长度为1430bp,经与GENEBANK中的16S rRNA片段比较分析,与6种不同科的微生物的同源率最高的为95%-95.47%。 采用温度梯度和病原浓度梯度回归感染实验方法,较为系统地研究了QDP的致病性。研究结果表明:QDP对栉孔扇贝有强烈的致病作用,高温(23℃以上)是其致病的必要条件,证实DQP是栉孔扇贝大规模死亡的病原体之一。