44 resultados para RNA GENE

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on its characteristic oral apparatus, the ciliate subclass Peritrichia has long been recognized as a monophyletic assemblage composed of the orders Mobilida and Sessilida. Following the application of molecular methods, the monophyly of Peritrichia has recently been questioned. We investigated the phylogenetic relationships of the peritrichous ciliates based on four further complete small subunit ribosomal RNA sequences of mobilids, namely Urceolaria urechi, Trichodina meretricis, Trichodina sinonovaculae, and Trichodina ruditapicis. In all phylogenetic trees, the mobilids never clustered with the sessilids, but instead formed a monophyletic assemblage related to the peniculines. By contrast, the sessilids formed a sister clade with the hymenostomes at a terminal position within the Oligohymenophorea. We therefore formally separate the mobilids from the sessilids (Peritrichia sensu stricto) and establish a new subclass, Mobilia Kahl, 1933, which contains the order Mobilida Kahl, 1933. We argue that the oral apparatus in the mobilians and sessilid peritrichs is a homoplasy, probably due to convergent evolution driven by their similar life-styles and feeding strategies. Morphologically, the mobilians are distinguished from all other oligohymenophoreans by the presence of the adhesive disc, this character being a synapomorphy for the Mobilia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The mitochondrial 16S ribosomal RNA gene is sequenced from 24 ingroups taxa, including 18 species from Labeoninae grouped in 13 genera. Phylogenetic analyses are subjected to neighbor joining, maximum parsimony, maximum likelihood and Bayesian analyses. Phylogenetic analysis indicates that Labeoninae is basically a monophyletic assemblage and can be divided into 2 major clades: one comprising the genera Cirrhinus, Crossocheilus and Garra; and the other consisting of the genera Labeo, Sinilabeo, Osteochilus, Pseudoorossocheilus, Parasinilabeo. Ptychidio, Semilabeo, Pseudogyricheilus, Rectori and Discogobio. According to our present analysis, the features such as the presence of the adhesive disc on the chin and the pharyngeal teeth in 2 rows used in the traditional taxonomy of Labeoninae provide scarce information for phylogeny of labeonine fishes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Chromosomal location of the 5S ribosomal RNA gene was studied in the eastern oyster, Crassostrea virginica Gmelin. using fluorescence in situ hybridization (FISH). Metaphase chromosomes were obtained from early embryos, and the FISH probe was made by PCR (polymerase chain reaction) amplification of the 5S rRNA gene and labeled by incorporation of digoxigenin-1 1-dUTP during PCR. Hybridization was detected with fluorescein-labeled antidigoxigenin antibodies. Two pairs of FISH signals were observed on metaphase chromosomes. Karyotypic analysis showed that the 5S rRNA gene cluster is interstitially located on short arms of chromosomes 5 and 6. On chromosome 5, the 5S rRNA genes were located immediately next to the centromere, whereas on chromosome 6, they were located approximately half way between the telomere and the centromere. Chromosomes of C. virginica are difficult to identify because of their similarities in size and arm ratio, and the chromosomal location of 5S rRNA genes provides unambiguous identification of chromosomes 5 and 6. Previous studies have mapped the major rRNA gene cluster (18S-5.8S-28S) to chromosome 2. and this study shows that the 5S rRNA gene cluster is not linked to the major rRNA genes and duplicated during evolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The most biological diversity on this planet is probably harbored in soils. Understanding the diversity and function of the microbiological component of soil poses great challenges that are being overcome by the application of molecular biological approaches. This review covers one of many approaches being used: separation of polymerase chain reaction (PCR) amplicons using denaturing gradient gel electrophoresis (DGGE). Extraction of nucleic acids directly from soils allows the examination of a community without the limitation posed by cultivation. Polymerase chain reaction provides a means to increase the numbers of a target for its detection on gels. Using the rRNA genes as a target for PCR provides phylogenetic information on populations comprising communities. Fingerprints produced by this method have allowed spatial and temporal comparisons of soil communities within and between locations or among treatments. Numerous samples can be compared because of the rapid high throughput nature of this method. Scientists now have the means to begin addressing complex ecological questions about the spatial, temporal, and nutritional interactions faced by microbes in the soil environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Terminal restriction fragment length polymorphism (T-RFLP) analysis is a polymerase chain reaction (PCR)-fingerprinting method that is commonly used for comparative microbial community analysis. The method can be used to analyze communities of bacteria, archaea, fungi, other phylogenetic groups or subgroups, as well as functional genes. The method is rapid, highly reproducible, and often yields a higher number of operational taxonomic units than other, commonly used PCR-fingerprinting methods. Sizing of terminal restriction fragments (T-RFs) can now be done using capillary sequencing technology allowing samples contained in 96- or 384-well plates to be sized in an overnight run. Many multivariate statistical approaches have been used to interpret and compare T-RFLP fingerprints derived from different communities. Detrended correspondence analysis and the additive main effects with multiplicative interaction model are particularly useful for revealing trends in T-RFLP data. Due to biases inherent in the method, linking the size of T-RFs derived from complex communities to existing sequence databases to infer their taxonomic position is not very robust. This approach has been used successfully, however, to identify and follow the dynamics of members within very simple or model communities. The T-RFLP approach has been used successfully to analyze the composition of microbial communities in soil, water, marine, and lacustrine sediments, biofilms, feces, in and on plant tissues, and in the digestive tracts of insects and mammals. The T-RFLP method is a user-friendly molecular approach to microbial community analysis that is adding significant information to studies of microbial populations in many environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A number of methods are available for those researchers considering the addition of molecular analyses of ectomycorrhizal (EcM) fungi to their research projects and weighing the various approaches they might take. Analyzing natural EcM fungal communities has traditionally been a highly skilled, time-consuming process relying heavily on exacting morphological characterization of EcM root tips. Increasingly powerful molecular methods for analyzing EcM communities make this area of research available to a much wider range of researchers. Ecologists can gain from the body of work characterizing EcM while avoiding the requirement for exceptional expertise by carefully combining elements of traditional methods with the more recent molecular approaches. A cursory morphological analysis can yield a traditional quantification of EcM fungi based on tip numbers, a unit with functional and historical significance. Ectomycorrhizal root DNA extracts may then be analyzed with molecular methods widely used for characterizing microbiota. These range from methods applicable only to the simple mixes resulting from careful morphotyping, to community-oriented methods that identify many types in mixed samples as well as provide an estimate of their relative abundances. Extramatrical hyphae in bulk soil can also be more effectively studied, extending characterization of EcM fungal communities beyond the rhizoplane. The trend toward techniques permitting larger sample sets without prohibitive labor and time requirements will also permit us to more frequently address the issues of spatial and temporal variability and better characterize the roles of EcM fungi at multiple scales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Karyotype and chromosomal location of the major ribosomal RNA genes (rDNA) were studied using fluorescence in situ hybridization (FISH) in five species of Crassostrea: three Asian-Pacific species (C. gigas, C. plicatula, and C. ariakensis) and two Atlantic species (C. virginica and C. rhizophorae). FISH probes were made by PCR amplification of the intergenic transcribed spacer between the 18S and 5.8S rRNA genes, and labeled with digoxigenin-11-dUTP. All five species had a haploid number of 10 chromosomes. The Atlantic species had 1-2 submetacentric chromosomes, while the three Pacific species had none. FISH with metaphase chromosomes detected a single telomeric locus for rDNA in all five species without any variation. In all three Pacific species, rDNA was located on the long arm of Chromosome 10 (10q)-the smallest chromosome. In the two Atlantic species, rDNA was located on the short arm of Chromosome 2 (2p)-the second longest chromosome. A review of other studies reveals the same distribution of NOR sites (putative rDNA loci) in three other species: on 10q in C. sikamea and C. angulata from the Pacific Ocean and on 2p in C. gasar from the western Atlantic. All data support the conclusion that differences in size and shape of the rDNA-bearing chromosome represent a major divide between Asian-Pacific and Atlantic species of Crassostrea. This finding suggests that chromosomal divergence can occur under seemingly conserved karyotypes and may play a role in reproductive isolation and speciation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The phylogenetic relationships and species identification of pufferfishes of the genus Takifugu were examined by use of randomly amplified polymorphic DNA (RAPD) and sequencing of the amplified partial mitochondrial 16S ribosomal RNA genes. Amplifications with 200 ten-base primers under predetermined optimal reaction conditions yielded 1962 reproducible amplified fragments ranging from 200 to 3000 bp. Genetic distances between 5 species of Takifugu and Lagocephalus spadiceus as the outgroup were calculated from the presence or absence of the amplified fragments. Approximately 572 bp of the 16S ribosonial RNA gene was amplified, using universal primers, and used to determine the genetic distance values. Topological phylogenic trees for the 5 species of Takifugu and outgroup were generated from neighbor-joining analysis based on the data set of RAPD analysis and sequences of mitochondrial 16S rDNA. The genetic distance between Takifugu rubripes and Takifugu pseudommus was almost the same as that between individuals within cacti species, but much smaller than that between T. rubripes, T. pseudommus, and the other species. The molecular data gathered from both analysis of mitochondria and nuclear DNA strongly indicated that T. rubripes and T. pseudommus should be regarded as the same species. A fragment of approximately 900 bp was amplified from the genome of all 26 T. pseudommus individuals examined and 4 individuals of intermediate varieties between T. rubripes and T. pseudommus. Of the 32 T. rubripes individuals, only 3 had the amplified fragment. These results suggest that this fragment may be useful in distinguishing between T. rubripes and T. pseudommus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The extremely thermophilic anaerobic archaeon strain, HJ21, was isolated from a deep-sea hydrothermal vent, could produce hyperthermophilic alpha-amylase, and later was identified as Thermococcus from morphological, biochemical, and physiological characteristics and the 16S ribosomal RNA gene sequence. The extracellular thermostable alpha-amylase produced by strain HJ21 exhibited maximal activity at pH 5.0. The enzyme was stable in a broad pH range from pH 5.0 to 9.0. The optimal temperature of alpha-amylase was observed at 95 degrees C. The half-life of the enzyme was 5 h at 90 degrees C. Over 40% and 30% of the enzyme activity remained after incubation at 100 degrees C for 2 and 3 h, respectively. The enzyme did not require Ca2+ for thermostability. This alpha-amylase gene was cloned, and its nucleotide sequence displayed an open reading frame of 1,374 bp, which encodes a protein of 457 amino acids. Analysis of the deduced amino acid sequence revealed that four homologous regions common in amylases were conserved in the HJ21 alpha-amylase. The molecular weight of the mature enzyme was calculated to be 51.4 kDa, which correlated well with the size of the purified enzyme as shown by the sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In plants and less-advanced animal species, such as C.elegans, introduction of exogenous double-stranded RNA (dsRNA) into cells would trigger degradation of the mRNA with homologous sequence and interfere with the endogenous gene expression. It might represent an ancient anti-virus response which could prevent the mutation in the genome that was caused by virus infection or mobile DNA elements insertion. This phenomenon was named RNA interference, or RNAi. In this study, RNAi was used to investigate the function of basonuclin gene during oogenesis. Microinjection of dsRNA directed towards basonuclin into mouse germinal-vesicle-intact (GV) oocytes brought down the abundance of the cognate mRNA effectively in a time- and concentration-dependent manner. This reduction effect was sequence-specific and showed no negative effect on other non-homologous gene expression in oocytes, which indicated that dsRNA can recognize and cause the degradation of the transcriptional products of endogenous basonuclin gene in a sequence-specific manner. Immunofluorescence results showed that RNAi could reduce the concentration of basonuclin protein to some extent, but the effect was less efficient than the dsRNA targeting towards tPA and cMos which was also expressed in oocytes. This result might be due to the long half life of basonuclin protein in oocytes and the short reaction time which was posed by the limited life span of GV oocytes cultured in vitro. In summary, dsRNA could inhibit the expression of the cognate gene in oocytes at both mRNA and protein levels. The effect was similar to Knock-out technique which was based on homologous recombination. Furthermore, hairpin-style dsRNA targeting basonuclin gene could be produced by transcription from a recombinant plasmid and worked efficiently to deplete the cognate mRNA in oocytes. This finding offered a new way to study the function of basonuclin in the early stage of oogenesis by infection of primordial oocytes with the plasmid expressing hairpin-style basonuclin dsRNA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: The DExD/H domain containing RNA helicases such as retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) are key cytosolic pattern recognition receptors (PRRs) for detecting nucleotide pathogen associated molecular patterns (PAMPs) of invading viruses. The RIG-I and MDA5 proteins differentially recognise conserved PAMPs in double stranded or single stranded viral RNA molecules, leading to activation of the interferon system in vertebrates. They share three core protein domains including a RNA helicase domain near the C terminus (HELICc), one or more caspase activation and recruitment domains (CARDs) and an ATP dependent DExD/H domain. The RIG-I/MDA5 directed interferon response is negatively regulated by laboratory of genetics and physiology 2 (LGP2) and is believed to be controlled by the mitochondria antiviral signalling protein (MAVS), a CARD containing protein associated with mitochondria. Results: The DExD/H containing RNA helicases including RIG-I, MDA5 and LGP2 were analysed in silico in a wide spectrum of invertebrate and vertebrate genomes. The gene synteny of MDA5 and LGP2 is well conserved among vertebrates whilst conservation of the gene synteny of RIG-I is less apparent. Invertebrate homologues had a closer phylogenetic relationship with the vertebrate RIG-Is than the MDA5/LGP2 molecules, suggesting the RIG-I homologues may have emerged earlier in evolution, possibly prior to the appearance of vertebrates. Our data suggest that the RIG-I like helicases possibly originated from three distinct genes coding for the core domains including the HELICc, CARD and ATP dependent DExD/H domains through gene fusion and gene/domain duplication. Furthermore, presence of domains similar to a prokaryotic DNA restriction enzyme III domain (Res III), and a zinc finger domain of transcription factor (TF) IIS have been detected by bioinformatic analysis. Conclusion: The RIG-I/MDA5 viral surveillance system is conserved in vertebrates. The RIG-I like helicase family appears to have evolved from a common ancestor that originated from genes encoding different core functional domains. Diversification of core functional domains might be fundamental to their functional divergence in terms of recognition of different viral PAMPs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Argonaute 2 gene plays a pivotal role in RNAi in many species. Herein is the first report of the cloning and characterization of Argonaute 2 gene in fish. The full-length cDNA of Gobiocypris rarus Argonaute 2 (GrAgo2) consisted of 3073 nucleotides encoding 869 amino acid residues with a calculated molecular weight of 98.499 kDa and an estimated isoelectric point of 9.18. Analysis of the deduced amino acid sequence showed the presence of two signature domains, PAZ and Piwi. RT-PCR analysis indicated that GrAgo2 mRNA expression could be detected in widespread tissues. After infection with grass carp reovirus, GrAgo2 expression was up-regulated from 12 h post-injection (p < 0.05) and returned to control levels at 48 h post-injection (p > 0.05). These data imply that GrAgo2 is involved in antiviral defense in rare minnow. (C) 2008 Published by Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Retinoid X receptor (RXR)/ultraspiracle (USP) is the heterodimeric partner of ecdysteroid receptor and is required for the molting process of arthropods. To better understand the molecular aspects governing the process of molting in shrimp, the full-length cDNA of two RXRs, named as FcRXR-1 and FcRXR-2 were obtained from Chinese shrimp Fenneropenaeus chinensis which were of 1715 and 1700 bp long, revealed a 1315 and 1300 bp open reading frame (ORF) respectively. Quantitative Real time PCR analysis showed a marked tissue-specific difference in the expression of FcRXR transcript, which revealed that the expression of FcRXR Could be regulated in a tissue-specific manner. Moreover, high expression of FcRXR mRNAs was observed in late pre-molt period (D3) and post molt stages (A-B) of shrimp. Among the two isoforms, FcRXR-2 appeared in a considerably high level in all the stages compared to the FcRXR-1. In addition, we examined the temporal expression of two chitinase genes: FcChitinase (FcChi) and FcChitinase-1 (FcChi-1) during the molt cycle of F chinensis. Both the FcChi and FcChi-1 transcripts were detected in all stages of molting, although considerable fluctuations observed through the molt cycle. Injection of double stranded RXR (dsRXR) into juvenile shrimp resulted in a maximum silencing effect at 48 h post injection. We analyzed the expression levels of FcChi, FcChi-1 and the ecdysone inducible gene E75 (FcE75) in samples of dsRXR injected shrimp. Significant reduction in levels of both FcE75, FcChi and FcChi-1 transcripts Occurred in the silenced shrimp. This correlation suggested that RXR might involve in the downstream regulation of E75 and chitinase gene transcription in the ecdysone signaling pathway of decapod crustaceans. (C) 2009 Published by Elsevier Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

RNA interference (RNAi) is an evolutionarily conserved mechanism by which double-stranded RNA (dsRNA) initiates post-transcriptional silencing of homologous genes. Here we report the amplification and characterisation of a full length cDNA from black tiger shrimp (Penaeus monodon) that encodes the bidentate RNAase III Dicer, a key component of the RNAi pathway. The full length of the shrimp Dicer (Pm Dcr1) cDNA is 7629 bp in length, including a 51 untranslated region (UTR) of 130 bp, a 3' UTR of 77 bp, and an open reading frame of 7422 bp encoding a polypeptide of 2473 amino acids with an estimated molecular mass of 277.895 kDa and a predicted isoelectric point of 4.86. Analysis of the deduced amino acid sequence indicated that the mature peptide contains all the seven recognised functional domains and is most similar to the mosquito (Aedes aegypti) Dicer-1 sequence with a similarity of 34.6%. Quantitative RT-PCR analysis showed that Pm Dcr1 mRNA is most highly expressed in haemolymph and lymphoid organ tissues (P 0.05). However, there was no correlation between Pm Dcr1 mRNA levels in lymphoid organ and the viral genetic loads in shrimp naturally infected with gill-associated virus (GAV) and Mourilyan virus (P > 0.05). Treatment with synthetic dsRNA corresponding to Pm Dcr1 sequence resulted in knock-down of Pm Dcr1 mRNA expression in both uninfected shrimp and shrimp infected experimentally with GAV. Knock-down of Pm Dcr1 expression resulted in more rapid mortalities and higher viral loads. These data demonstrated that Dicer is involved in antiviral defence in shrimp. (c) 2007 Elsevier Ltd. All rights reserved.