8 resultados para REDUCING SUGAR PRODUCTION

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogen sulfide (H2S) production patterns and the influence of oxygen (O-2) concentration were studied based on a well operated composting plant. A real-time, online multi-gas detection system was applied to monitor the concentrations of H2S and O-2 in the pile during composting. The results indicate that H2S was mainly produced during the early stage of composting, especially during the first 40 h. Lack of available O-2 was the main reason for H2S production. Maintaining the O-2 concentration higher than 14% in the pile could reduce H2S production. This study suggests that shortening the interval between aeration or aerating continuously to maintain a high O-2 concentration in the pile was an effective strategy for restraining H2S production in sewage sludge composting. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

本论文以红薯淀粉的双酶法水解液为碳源,从19 株红色酵母中筛选出一株油脂含量较高的菌株掷孢酵母(Sporobolomyces reseus)As.2.618。为了提高掷孢酵母(S.reseus)As.2.618 的油脂产量,考察了培养基组成对该菌生长情况及油脂积累的影响。用均匀设计法对培养基组成进行了优化,由DPS软件得出的优化结果为:还原糖103g/L、酵母粉11.5g/L、磷酸二氢钾0.3g/L、硫酸镁0.15g/L。生物量可达19.23 g/L,油脂含量为3.875 g/L。研究了添加二价离子对该菌的生长及油脂积累的影响,结果表明Zn2+对该菌生长和油脂积累都有显著促进作用。研究了发酵条件以及添加氧载体正十二烷对该菌发酵的影响,表明添加正十二烷有利用于该菌生长与油脂积累。得出最佳发酵条件是:在还原糖103g/L、酵母粉11.5g/L、磷酸二氢钾0.3g/L、硫酸镁0.15g/L。添加30mg/L 硫酸锌,接种量为5%,在24h 后添加2g/L 的碳酸钙和2%(v/v)正十二烷,pH6.0 培养温度为27℃,转速为200r/min,培养时间为7 天的条件下,该菌生物量干重可达35.05g/L,油脂含量也达11.98g/L。Lipid is one of the basic material for life-sustaining activities andimportant industrial materials. As lipid resources mainly come from the animal andthe plant, the problem of lipid lack is encountered at times. The lipid frommicroorganisms is the substitute and superior to the above lipid with a short period ofproduction and much cheaper fermentation materials such as agricultural and sidelineproducts or wastes of crop.Thus large scale production and broad application ofmicrobial lipid will be efficient not only in substitute of the animal and the plant lipidfor food and industrial field , but also inducing a new way leading to solve the energyproblem.For the purpose of exploring the characteristics of lipid production of redyeasts from sweet potato starch hydrolysates. 19 red yeasts are screened for thecapability of lipid producing and one strain Sporobolomyces reseus As.2.618 withsuperior performance is sellected.To improve the Sporobolomyces reseus As.2.618’s capability of lipidaccumulation , the components of the medium, which may influence the growth of thestrain and the lipid yield have been studied. To get the optimum mediumcomponents ,the “uniform design” was used .The DPS software gave the optimummedium component is: reducing sugar 103 g/L、yeast extract 11.5 g/L、KH2PO4 0.3g/L、MgSO4 0.15 g/L. The biomass could reach up to 19.23 g/L and lipid yield 3.87g/L with the above composition of fermentation medium.Furthermore the fermentation conditions , addition of the divalent metal ionsand the oxygen vector to increase the strain’s lipid producing capability are tested.The optimum condition is : reducing sugar 103 g/L、yeast extract 11.5 g/L、KH2PO40.3 g/L、MgSO4 0.15 g/L,Adding 30mg/L ZnSO4,and adding 2g/L CaCO3 2%(v/v)n-dodecane after 24h’s fermentation. the optimal fermentation condition were asfollow :30ml medium in the 500ml flask with initial pH 6.0,the flasks with 5%inoculation volume were at 200r/min shaking speed for 7d’s fermentation at27 .Under this kind of condition the high biom ¡æ ass which reach to 35.05 g/L could begot ,the yield of lipid also could reach to 11.98g/L.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

本文结合我国燃料乙醇发展的方针政策,以酿酒酵母和运动发酵单胞菌为菌种研究其在非粮能源作物木薯中乙醇发酵的情况,为木薯原料更好地应用于生产中提供了理论依据。 酿酒酵母木薯高浓度乙醇发酵的研究。实验采用的木薯干淀粉含量约70-75%。以酿酒酵母为菌种进行高浓度乙醇发酵的工艺条件研究,最佳条件为:木薯干粉碎细度为35目,料水比1:2,α-淀粉酶用量0.09 KNU/g淀粉,蒸煮温度85 ℃,蒸煮时间15 min。采用30 ℃同步糖化发酵工艺,糖化酶用量为3.4 AGU/g淀粉,发酵时间30 h。在10 L发酵罐中,乙醇质量比达127.88 g/kg,发酵效率为88.28%,发酵强度4.263 g/kg/h,100 L中试研究中乙醇浓度为127.75 g/kg,发酵强度4.258 g/kg/h。利用高效液相色谱对发酵液中残糖进行了分析,证明葡萄糖、果糖等单糖已完全被菌体利用,剩余糖为二糖,三糖等不可发酵的低聚糖。 运动发酵单胞菌快速乙醇发酵的研究。对实验室保藏的8株运动发酵单胞菌进行比较,选择发酵速度最快的Zymomonas mobilis232B进行研究。该菌在纯葡萄糖中的最佳发酵条件为:葡萄糖浓度18%,起始pH 6-7,发酵温度30 ℃,发酵时间18 h,乙醇浓度88 g/kg。在以木薯为底物同步糖化快速乙醇发酵中,采用Full Factorial设计和最速上升实验确定了培养基成分中的2个显著性因子及其最适浓度:酵母粉4 g/kg,硫酸铵0.8 g/kg。在最适培养基条件下,对木薯料水比和糖化酶用量进行了优化,得到Z.mobilis232B木薯乙醇发酵最佳料水比1:3,糖化酶浓度4 AGU/g淀粉,乙醇发酵4.915 g/kg/h。利用高效液相色谱对发酵液中残糖进行了分析,剩余糖为二糖,三糖等,但成分较酵母发酵后复杂。 According to the fuel ethanol development plans and policies in our country, the ethanol production from cassava by Saccharomyces cerevisiae and Zymomonas mobilis was studied. It provided theoretical basis for ethanol fermentation by cassava in industry. Part 1 is the study of VHG (very high gravity) ethanol fermentation by Saccharomyces cerevisiae. The content of starch in cassava was 70-75%. Compared with the performances under different experimental conditions, the following optimal conditions for VHG fermentation were obtained: Granule size of dry cassava 35 mashes, hydromodulus of cassava to water at 1:2, α-amylase enzyme dosage 0.09 KNU/g starch, cooking temperature 85 ℃ for 15 min, using the SSF process (simultaneous saccharification and fermentation) and the amount of glucoamylase 3.4 AGU/g starch. Accordingly, the final ethanol concentration was up to 127.88 g/kg; the ethanol yield reached 88.28%, and ethanol productivity was 4.263 g/kg/h after 30 h. When the fermentation scale expanded to 100 L, the final ethanol concentration was 127.75 g/kg, and the ethanol productivity was 4.258 g/kg/h in 30 h. The residual sugar was analyzed by high performance liquid chromatography, and proved that there was no glucose and fructose. The residual reducing sugar was some unfermentable oligosaccharide Part 2 is the study of the rapid ethanol production by Zymomonas mobilis. Compare with other seven stains, Zymomonas mobilis 232B was selected for research. The optimum condition in glucose medium was as follow: glucose concentration 18%, initial pH 6-7, and fermentation temperature 30 ℃. The ethanol concentration was 88g/kg in 18 h. After that, rapid ethanol production from cassava in SSF by Zymomonas mobilis 232B was studied. Through a series of experiments aided by Full Factorial Design and steepest ascent search, the optimal concentration yeast extract and ammonium sulfate were determined: 4 g/kg and 0.8 g/kg, each. Under optimum medium conditions, the optimal hydromodulus of cassava to water and glucoamylase dosages were obtained: hydromodulus of cassava to water at 1:3 and glucoamylase dosages 4 AGU/g starch. The ethanol production reached 4.915 g/kg/h. The residual sugar was analyzed by HPLC, and proved that the residual reducing sugar was some unfermentable oligosaccharide,but the components were more complex than that fermentation by Saccharomyces cerevisiae.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

木质纤维素原料种类多、分布广、数量巨大,通过燃料乙醇生产技术、厌氧沼气发酵技术将其转化成乙醇、沼气等二次能源,一定程度上可以缓解化石能源的不断消耗所带来的能源危机,也解决了农林废弃物引起的环境污染问题。其中以木质纤维素原料生产燃料乙醇,还可以避免以淀粉类和糖类原料生产燃料乙醇时带来的“与人争粮”等一系列问题。因此具有重要的经济效益、环境效益和社会效益。 然而,木质纤维素原料结构致密,木质素包裹在纤维素、半纤维素外围,导致其很难被降解利用,必须进行适当的预处理,去除木质素,打破原有的致密结构,利于原料的后续利用。因此,预处理成为木质纤维素原料能源化利用的关键。而目前预处理环节的费用过于昂贵,于是寻找一种高效、低成本的预处理方法是当今研究的热点。 本论文采用组合白腐真菌对木质纤维素原料进行生物预处理研究,与其他物理化学法相比,该法有着专一性较强、反应温和、不造成环境污染、成本低等优势。白腐真菌主要通过分泌木质素降解酶对木质素进行降解,从而破坏原料的致密结构,提高后续利用效率。所以木质素降解酶酶活的高低是影响原料预处理效果的一个关键因素。于是本论文首先通过将白腐真菌进行组合的方式提高木质素降解酶(漆酶,Lac)酶活;接着对组合菌的菌株相互作用机理进行研究,阐明组合菌Lac 酶活提高的原因,为菌株组合提高Lac 酶活这种方法的应用提供理论依据,同时也为后续组合白腐真菌预处理木质纤维素原料提供指导;进一步采用固态发酵和木质素降解酶两种方式对木质纤维素原料进行预处理研究,最大化去除木质素成分,破坏原料的致密结构;最终对预处理后原料的酶解糖化进行初步研究,为原料后续的能源化应用奠定基础。具体研究结果如下: (1) 以实验室保存的三株主要分泌Lac 的白腐真菌为出发菌株,筛选得到一组Lac 酶活明显提高的组合菌55+m-6,其中菌株55 为Trametes trogii sp.,m-6 为Trametes versicolor sp.,组合后Lac 酶活较单菌株分别提高24.13倍和4.07 倍。组合菌的最适产酶条件为pH 6.5、C/N 16:1、Tween 80 添加量为0.01%,在该条件下组合菌的Lac 酶活峰值比未优化时提高4.11倍。 (2) 对组合菌55+m-6 菌株间相互作用机理进行研究,发现菌株之间不存在抑制作用;平板培养时,菌丝交界处Lac 酶活最高并分泌棕色色素;液体培养时,菌株m-6 对组合后Lac 酶活的提高起着更为重要的作用:菌株m-6的菌块、过滤灭菌胞外物以及高温灭菌胞外物均能明显刺激菌株55 的Lac产生;菌株55、m-6 进行组合后,同工酶种类未发生增减,但有三种Lac同工酶浓度有所提高;对菌株胞外物进行薄层层析和质谱分析,结果表明组合前后菌株胞外物中各物质在浓度上存在较大的变化。推测组合菌Lac酶活的明显提高,主要是由于菌株m-6 胞外物中的一些物质能刺激菌株55 分泌大量Lac 进行代谢,且这些刺激物质并非菌株m-6 特有,菌株55自身也可以代谢生成,但是适当的浓度才能刺激Lac 的大量分泌。 (3) 将组合菌55+m-6 用于固态发酵预处理木质纤维素原料,发现其对玉米秆的降解程度最大,在粉碎度40 目、含水率65%的最优处理条件下,处理至第15d,秸秆失重率为41.24%,其中木质素、纤维素、半纤维素均有降解,且Lac 和纤维素酶(CMC)酶活以及还原糖量均达到峰值。 (4) 对玉米秆进行木质素降解酶预处理,发现Lac/1-羟基苯并三唑(HBT)系统对玉米秆木质素的降解效果最好,在最优处理条件时,即HBT 用量0.2%、处理时间1d、Lac 用量50U/g,木质素降解率可达12.60%。预处理后玉米秆的致密结构被破坏,比表面积增大,利于后续酶与纤维素、半纤维素成分的结合。 (5) 对预处理后的玉米秆进行酶解糖化,其中组合菌固态发酵预处理后玉米秆的糖化率比对照高4.33 倍;Lac/HBT 系统预处理后玉米秆的糖化率比对照高2.99%,糖化液中主要含有木糖、葡萄糖两种单糖。 There are many kinds and large quantities of lignocellulosic biomass widely distributed on the earth. They can be converted into secondary energy such as fuel ethanol, biogas, et al., which can relieve the energy crisis caused by consumption of fossil energy resources and solve the problem of environmental pollution caused by agriculture and forestry waste. Meanwhile, the production of fuel ethanol from lignocellulosic biomass can ensure food supply to human kind instead of starch- and sugar-containing raw materials. So the energy conversion of lignocellulosic biomass contributes considerable economic, environment and social benefits. However, lignocellulosic biomass has the compact structure, in which lignin surrounds cellulose and hemicellulose, so it must be pretreated before energy usage and pretreatment is one of the most critical steps in the energy conversion of lignocellulosic biomass. At present, the cost of pretreatment is too expensive, so looking for an efficient and low-cost pre-treatment method is one of recent research hot spots. In this research, combined white rot fungi pretreatment method was used, which had some advantages in low cost, high specificity, mild reacting conditions and friendly environmental effects compared with the other physical and chemical methods. White rot fungi secrete lignin degrading enzymes to degrade the content of lignin and damage the contact structure of lignocellulosic biomass, so the activity of the lignin degrading enzymes is the key factor to the degradation effect of raw materials. Firstly, the combined fungi with high laccase activity were screened; secondly, the interaction mechanism between strains was studied, and the cause of higher laccase activity after strains combination was also preliminary clarified; under the guidance of the mechanism, lignocellulosic biomass was pretreated by the combined fungi; lastly, the enzymatic hydrolysis of pretreated lignocellulosic biomass was also preliminary studied; all of the researches could lay the foundation for the energy application of lignocellulosic biomass. The specific research results were as follows: (1) The combined fungi 55+m-6 with significant higher laccase activity were screened from the three white rot fungi stored in our lab which mainly secreted laccase. Strain 55 and strain m-6 were Trametes trogii sp. and Trametes versicolor sp., respectively. The laccase activity of combined fungi was 24.13 and 4.07-fold than strain 55 and strain m-6, respectively. The optimized condition for laccase production of the combined fungi in liquid medium was pH 6.5, C/N 16:1 and Tween 80 0.01%. In this optimized condition, the laccase activity of combined fungi was 4.11-fold higher comparing with which in non-optimized medium. (2) The interaction mechanism between strain 55 and strain m-6 was further studied, and no inhibition effect was observed. Brown pigment was secreted on the junction of the two strains on the plate, where the highest laccase activity was detected. Strain m-6 was much important to boost laccase activity of combined fungi in liquid medium, and strain 55 was stimulated by fungal plug, filter sterilized extracellular substances and high temperature sterilized extracellular substances of strain m-6 to produce laccase. The types of laccase isozymes did not change after combining strain 55 and strain m-6, but the concentrations of three types increased. Mass Spectrometry and TLC analysis of extracellular substances of each strain showed that concentration of some substances considerably changed after strains were combined. It was supposed that the cause of higher laccase activity of combined fungi was mainly due to some extracellular substances of strain m-6 with the appropriate concentration which stimulated laccase secretion of strain 55 and generated not only by strain m-6 but also by strain 55. (3) Combined fungi 55+m-6 were used to lignocellulosic biomass pretreatment with the type of solid-state fermentation. The highest degree of degradation of corn straw was obtained, including the rate of weight loss was 41.24% and the lignin, cellulose and hemicellulose were degraded partially under the optimized condition of 40 mesh, 65% water content on 15th day. Laccase, CMCase activities and content of reducing sugar reached the maximum value on that day. (4) Lignin degrading enzymes from combined fungi 55+m-6 were used for corn straw pretreatment. The most remarkable degradation of lignin in corn straw with Lac/1-hydroxybenzotriazole (HBT) system was observed, and the 12.60% lignin degradation was obtained under the optimized condition of 0.2% HBT, 50 U/g laccase for 1 d. After pretreated by Lac/HBT, the tight structure of corn straw was demolished and specific surface area increased, which had advantages for accessible of enzyme to cellulose and hemicellulose. (5) The corn straws pretreated by combined fungi 55+m-6 with the type of solid-state fermentation and Lac/HBT were used for enzymatic hydrolysis, and the saccharification rates of each pretreatment type were 4.33 times and 2.99% higher than CK, respectively. The enzymatic hydrolysis liquid of corn straw pretreated by Lac/HBT mainly contained xylose and glucose.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Enzymatic hydrolysis of cellulose was highly complex because of the unclear enzymatic mechanism and many factors that affect the heterogeneous system. Therefore, it is difficult to build a theoretical model to study cellulose hydrolysis by cellulase. Artificial neural network (ANN) was used to simulate and predict this enzymatic reaction and compared with the response surface model (RSM). The independent variables were cellulase amount X-1, substrate concentration X-2, and reaction time X-3, and the response variables were reducing sugar concentration Y-1 and transformation rate of the raw material Y-2. The experimental results showed that ANN was much more suitable for studying the kinetics of the enzymatic hydrolysis than RSM. During the simulation process, relative errors produced by the ANN model were apparently smaller than that by RSM except one and the central experimental points. During the prediction process, values produced by the ANN model were much closer to the experimental values than that produced by RSM. These showed that ANN is a persuasive tool that can be used for studying the kinetics of cellulose hydrolysis catalyzed by cellulase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidation-reduction properties of surface sediments are tightly associated with the geochemistry of substances, and reducing organic substances (ROS) from hydrophytes residues may play an important role in these processes. In this study, composition, dynamics, and properties of ROS from anaerobic decomposition of Eichhornia crassipes (Mart.) Solms, Potamogenton crispus Linn, Vallisneria natans (Lour.) Hara, Lemna trisulca Linn and Microcystis flos-aquae (Wittr) Kirch were investigated using differential pulse voltammetry (DPV). The type of hydrophytes determined both the reducibility and composition of ROS. At the peak time of ROS production, the anaerobic decomposition of M. flos-aquae produced 6 types of ROS, among which 3 belonged to strongly reducing organic substance (SROS), whereas there were only 3-4 types of ROS from the other hydrophytes, 2 of them exhibiting strong reducibility. The order of potential of hydrophytes to produce ROS was estimated to be: M. flos-aquae > E. crassipes > L. trisulca > P. crispus approximate to V. natans, based on the summation of SROS and weakly reducing organic substances (WROS). The dynamic pattern of SROS production was greatly different from WROS. The total SROS appeared periodic fluctuation with reducibility gradually weakening with incubation time, whereas the total WROS increased with incubation time. Reducibility of ROS from hydrophytes was readily affected by acid, base and ligands, suggesting that their properties were related to these aspects. In addition to the reducibility, we believe that more attention should be paid to the other behaviors of ROS in surface sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

本文对不同菌种(酵母菌和运动发酵单胞菌)快速生产燃料乙醇的条件进行了研究,实现了鲜甘薯快速转化为燃料乙醇。全文分为两部分: 第一部分:酵母菌快速生产燃料乙醇的条件研究。通过单因素试验,酵母菌快速生产燃料乙醇的条件为:发酵方式采用边糖化边发酵(SSF),蒸煮温度为85 ℃,料水比2:1(初始糖浓度 210 g/kg),糖化酶用量0.75 AGU/g 鲜甘薯,接种量10%(v/w)。在最优条件下,经过24 h发酵,乙醇浓度可达97.44 g/kg, 发酵效率为92%,发酵强度为4.06 g/kg/h。由于采用了低温蒸煮和SSF,可以大大节约能耗,从而降低乙醇生产的成本。同时,利用摇瓶优化的条件,进行了10 L,100 L,500 L发酵罐的放大试验,由于发酵罐初期可以人为通氧,使菌体能迅速积累,发酵时间缩短2 h,发酵效率在90%以上。 第二部分:运动发酵单胞菌快速生产燃料乙醇条件研究。通过单因素试验和正交试验获得了发酵的最佳参数:初始pH值6.0-7.0,硫酸铵5.0 g/kg,糖化酶量1.6 AUG/kg淀粉,初始糖浓度200 g/kg,接种量12.5%(v/w)。经过21 h发酵,乙醇浓度为95.15 g/kg,发酵效率可达94%。同时对不灭菌发酵也进行了研究,发酵效率可达92%。为鲜甘薯运动发酵单胞菌燃料乙醇的工业化生产打下基础。 对发酵结束后的残糖进行了研究。通过薄层层析和葡萄氧化酶测定证明:无论是酵母菌还是运动发酵单胞菌发酵结束后的发酵液中都不含葡萄糖。经过HPLC进一步分析残糖说明:发酵液中已没有葡萄糖成分;经糖化酶水解后仍没有葡萄糖出现;但经酸水解后又出现了葡萄糖,说明结束后的残糖是一些低聚糖结构。有关残糖的结构需要进一步研究。可以通过开发高效的低聚糖水解酶来降低发酵液的残糖,提高原料的利用率。 A new technology for rapid production fuel ethanol from fresh sweet potato by different microorganisms (Saccharomyces cerevisiae and Zymomonas mobilis) was gained in this research. The paper involved two parts: Part 1: The study on fuel ethanol rapid production from fresh sweet potato by Saccharomyces cerevisiae. The following parameters of Saccharomyces cerevisiae was investigated by a series of experiments: fermentation models, cooking temperature, initial sugar concentration and glucoamylase dosage. The results showed that SSF (simultaneous saccharification and fermentation) not only reduced the fermentation time (from 30 to 24h) but also enhanced the ethanol concentration (from 73.56 to 95.96 g/kg). With low-temperature-cooking (85 ℃) using SSF, the Saccharomyces cerevisiae was able to produce ethanol 97.44 g/kg which the fermentation yield could reach to 92% and ethanol productivity 4.06 g/kg/h from sweet potato enzymatic hydrolysis. Furthermore, the savings in energy by carrying out the cooking (85 ℃) and saccharification (30 ℃) step at low temperature had been realized. The results were also verified in 10 L, 100 L and 500 L fermentor. The fermentation yield was no less than 90%. The fermentation time of fermenter was shorter than Erlenmeyer flask. This may be that the aeration in the early fermentation period is available, which lead to the rapidly commutations of biomass. Part 2: The technology of ethanol rapid production with simultaneous saccharification and fermentation ( SSF ) by Zymomonas mobilis,using fresh sweet potato as raw material was studied. The effects of various factors on the yield of ethanol were investigated by the single factor and the orthogonal experiments. As a result, the optimal technical conditions were obtained from those experiments:initial pH value 6.0-7.0, nitride 5.0 g/kg,(NH4)2SO4, glucoamylase 1.6 AUG/kg starch, inoculums concentration 12.5% (v/w). The Zymomonas mobilis was able to produce ethanol 95.15 g/kg, with 94% of the theoretical yield, from fresh sweet potato after 24 h fermentation. The fermentation efficiency of non-sterilized was also reach to 92%. We also analyzed the final fermentation residual sugars of Saccharomyces cerevisiae and Zymomonas mobilis. When the residual sugars were analyzed by thin-layer chromatogram and glucose oxidase, there was no glucose. The analysis of reducing sugars by HPLC showed that there was no glucose existed in the fermentation liquor. However, the glucose appeared after being hydrolyzed by acid. It is indicated that the residual sugars in the final fermentation liquor were the configuration of oligosaccharide, which was linked by the special glycosidic bonds. It was feasible for reducing residual sugars to develope the enzyme that can degradation the oligosaccharide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial and temporal distribution of vegetation net primary production (NPP) in China was studied using three light-use efficiency models (CASA, GLOPEM and GEOLUE) and two mechanistic ecological process models (CEVSA, GEOPRO). Based on spatial and temporal analysis (e.g. monthly, seasonally and annually) of simulated results from ecological process mechanism models of CASA, GLOPEM and CEVSA, the following conclusions could be made: (1) during the last 20 years, NPP change in China followed closely the seasonal change of climate affected by monsoon with an overall trend of increasing; (2) simulated average seasonal NPP was: 0.571 +/- 0.2 GtC in spring, 1.573 +/- 0.4 GtC in summer, 0.6 +/- 0.2 GtC in autumn, and 0.12 +/- 0.1 GtC in winter. Average annual NPP in China was 2.864 +/- 1 GtC. All the five models were able to simulate seasonal and spatial features of biomass for different ecological types in China. This paper provides a baseline for China's total biomass production. It also offers a means of estimating the NPP change due to afforestation, reforestation, conservation and other human activities and could aid people in using for-mentioned carbon sinks to fulfill China's commitment of reducing greenhouse gases.