10 resultados para RECIPROCITY

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文发展了非线性边界条件相变传热过程的轴对称双倒易边界元方法,数值模拟了金属熔滴在快速冷却条件下的快速凝固过程。分别研究了在微重力落管和落塔中及喷射成形过程中金属熔滴的快速凝固过程,得到了过冷度,再辉时间,温度变化及相变界面随时间的变化等数值结果。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

研究了碱金属氟化物对掺Yb3+氟磷玻璃的光谱性质和析晶稳定性能的影响。运用倒易法计算了Yb3+的发射截面。结果显示,LiF的引入对吸收和发射截面的提高作用较大并出现最佳引入量极值,其次为KF。碱金属氟化物的引入可提高二元体系的析晶稳定性能,使玻璃网络结构得到改善;拉曼光谱显示二元体系中引入YbF3后玻璃网络结构得到增强,而在引入碱金属氟化物的三元体系中掺杂YbF3后破坏了网络完整性,降低系统析晶稳定性能。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

0.5 at.% Yb:YAlO3(YAP), 5 at.% Yb:YAP and 15 at.% Yb:YAP were grown using the Czochralski method. Their absorption and fluorescence spectra were measured at room temperature and their emission line shape was calculated using the method of reciprocity. It was observed that the fluorescence spectra changed appreciably with the increasing of Yb concentration. For 0.5 at.% Yb:YAP, the line shape of fluorescence is very similar with the calculated emission line shape; with the increasing of Yb doping concentration, the line shape of fluorescence is very different from the calculated emission line shape. These phenomena are caused by the strong self-absorption at 979 and 999 nm for Yb:YAP. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The YAG crystal codoped with Yb3+ and Tm3+ has been grown by Czochralski (Cz) method. The crystal structure of the crystal has been determined by X-ray diffraction analysis. The absorption and emission spectra of Yb,Tm:YAG crystal at room temperature have also been studied. The emission cross-sections have been calculated by Fuechtbauer-Ladenburg formula and reciprocity method. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Explaining "Tragedy of the Commons" of evolution of cooperation remains one of the greatest problems for both biology and social science. Asymmetrical interaction, which is one of the most important characteristics of cooperative system, has not been sufficiently considered in the existing models of the evolution of cooperation. Considering the inequality in the number and payoff between the cooperative actors and recipients in cooperation systems, discriminative density-dependent interference competition will occur in limited dispersal systems. Our model and simulation show that the local but not the global stability of a cooperative interaction can be maintained if the utilization of common resource remains unsaturated, which can be achieved by density-dependent restraint or competition among the cooperative actors. More intense density dependent interference competition among the cooperative actors and the ready availability of the common resource, with a higher intrinsic contribution ratio of a cooperative actor to the recipient, will increase the probability of cooperation. The cooperation between the recipient and the cooperative actors can be transformed into conflict and, it oscillates chaotically with variations of the affecting factors under different environmental or ecological conditions. The higher initial relatedness (i.e. similar to kin or reciprocity relatedness), which is equivalent to intrinsic contribution ratio of a cooperative actor to the recipient, can be selected for by penalizing less cooperative or cheating actors but rewarding cooperative individuals in asymmetric systems. The initial relatedness is a pivot but not the aim of evolution of cooperation. This explains well the direct conflict observed in almost all cooperative systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spatially-resolved electroluminescence (EL) images from solar cells contain information of local current distribution. By theoretical analysis of the EL intensity distribution, the current density distribution under a certain current bias and the sheet resistance can be obtained quantitatively. Two-dimensional numerical simulation of the current density distribution is employed to a GaInP cell, which agrees very well with the experimental results. A reciprocity theorem for current spreading is found and used to interpret the EL images from the viewpoint of current extraction. The optimization of front electrodes is discussed based on the results. (C) 2010 American Institute of Physics. [doi:10.1063/1.3431390]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

研究了掺Yb3+硅酸盐玻璃的吸收光谱和发射光谱. 采用Fuchbauer—Ladenburger(F-L) 和 Reciprocity Method(RM)两种方法计算和探讨了Yb3+的积分吸收截面和受激发射截面及荧光寿命等光谱参数. 结果表明, 相同厚度下这些参数随Yb2O3 掺杂浓度的增加而增大,且在Yb2O3 浓度为1.5mol%时取得最大值,在样品厚度为2mm 时荧光寿命最大(1.06 ms);Yb3+基态再吸收造成采用两种方法计算的发射面积存在差值,比较发现采用RE 方法计算Yb3+的受激发射截面较为合理.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on a viewpoint of an intricate system demanding high, this thesis advances a new concept that urban sustainable development stratagem is a high harmony and amalgamation among urban economy, geo-environment and tech-capital, and the optimum field of which lies in their mutual matching part, which quantitatively demarcates the optimum value field of urban sustainable development and establishes the academic foundation to describe and analyze sustainable development stratagem. And establishes a series of cause-effect model, a analysissitus model, flux model as well as its recognizing mode for urban system are established by the approach of System Dynamics, which can distinguish urban states by its polarity of entropy flows. At the same time, the matter flow, energy flow and information flow which exist in the course of urban development are analyzed based on the input/output (I/O) relationships of urban economy. And a new type of I/O relationships, namely new resources-environment account, are established, in which both resource and environment factors are considered. All above that settles a theoretic foundation for resource economy and environment economy as well as quantitative relationships of inter-function between urban development and geoenvironment, and gives a new approach to analyze natinal economy and urban sustainable development. Based on an analysis of the connection between resource-environmental construct of geoenvironment and urban economy development, the Geoenvironmental Carrying Capability (GeCC) is analyzed. Further more, a series of definitions and formula about the Gross Carrying Capability (GCC), Structure Carrying Capability (SCC) and Impulse Carrying Capability (ICC) is achieved, which can be applied to evaluate both the quality and capacity of geoenvironment and thereunder to determine the scale and velocity for urban development. A demonstrative study of the above is applied to Beihai city (Guangxi province, PRC), and the numerical value laws between the urban development and its geoenvironment is studied by the I/O relationship in the urban economy as following: · the relationships between the urban economic development and land use as well as consumption of underground water, metal mineral, mineral energy source, metalloid mineral and other geologic resources. · the relationships between urban economy and waste output such as industrial "3 waste", dust, rubbish and living polluted water as well as the restricting impact of both resource-environmental factors and tech-capital on the urban grow. · Optimization and control analysis on the reciprocity between urban economy and its geoenvironment are discussed, and sensitive factors and its order of the urban geoenvironmental resources, wastes and economic sections are fixed, which can be applied to determine the urban industrial structure, scale, grow rate matching with its geoenvironment and tech-capital. · a sustainable development stratagem for the city is suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamic prediction of complex reservoir development is one of the important research contents of dynamic analysis of oil and gas development. With the increase development of time, the permeabilities and porosities of reservoirs and the permeability of block reservoir at its boundaries are dynamically changing. How to track the dynamic change of permeability and porosity and make certain the permeability of block reservoir at its boundary is an important practical problem. To study developing dynamic prediction of complex reservoir, the key problem of research of dynamic prediction of complex reservoir development is realizing inversion of permeability and porosity. To realize the inversion, first of all, the fast forward and inverse method of 3-dimension reservoir simulation must be studied. Although the inversion has been widely applied to exploration and logging, it has not been applied to3-dimension reservoir simulation. Therefore, the study of fast forward and inverse method of 3-dimension reservoir simulation is a cutting-edge problem, takes on important realistic signification and application value. In this dissertation, 2-dimension and 3-dimension fluid equations in porous media are discretized by finite difference, obtaining finite difference equations to meet the inner boundary conditions by Peaceman's equations, giving successive over relaxation iteration of 3-dimension fluid equations in porous media and the dimensional analysis. Several equation-solving methods are compared in common use, analyzing its convergence and convergence rate. The alternating direction implicit procedure of 2-dimension has been turned into successive over relaxation iteration of alternating direction implicit procedure of 3-dimension fluid equations in porous media, which possesses the virtues of fast computing speed, needing small memory of computer, good adaptability for heterogeneous media and fast convergence rate. The geological model of channel-sandy reservoir has been generated with the help of stochastic simulation technique, whose cross sections of channel-sandy reservoir are parabolic shapes. This method makes the hard data commendably meet, very suit for geological modeling of containing complex boundary surface reservoir. To verify reliability of the method, theoretical solution and numerical solution are compared by simplifying model of 3-dimension fluid equations in porous media, whose results show that the only difference of the two pressure curves is that the numerical solution is lower than theoretical at the wellbore in the same space. It proves that using finite difference to solve fluid equations in porous media is reliable. As numerical examples of 3-dimension heterogeneous reservoir of the single-well and multi-well, the pressure distributions have been computed respectively, which show the pressure distributions there are clearly difference as difference of the permeabilities is greater than one order of magnitude, otherwise there are no clearly difference. As application, the pressure distribution of the channel-sandy reservoir have been computed, which indicates that the space distribution of pressure strongly relies on the direction of permeability, and is sensitive for space distributions of permeability. In this dissertation, the Peaceman's equations have been modified into solving vertical well problem and horizontal well problem simultaneously. In porous media, a 3D layer reservoir in which contain vertical wells and horizontal wells has been calculated with iteration. For channel-sandy reservoir in which there are also vertical wells and horizontal wells, a 3D transient heterogeneous fluid equation has been discretized. As an example, the space distribution of pressure has been calculated with iteration. The results of examples are accord with the fact, which shows the modification of Peaceman's equation is correct. The problem has been solved in the space where there are vertical and horizontal wells. In the dissertation, the nonuniform grid permeability integration equation upscaling method, the nonuniform grid 2D flow rate upscaling method and the nonuniform grid 3D flow rate upscaling method have been studied respectively. In those methods, they enhance computing speed greatly, but the computing speed of 3D flow rate upscaling method is faster than that of 2D flow rate upscaling method, and the precision of 3D flow rate upscaling method is better than that of 2D flow rate upscaling method. The results also show that the solutions of upscaling method are very approximating to that of fine grid blocks. In this paper, 4 methods of fast adaptive nonuniform grid upscaling method of 3D fluid equations in porous media have been put forward, and applied to calculate 3D heterogeneous reservoir and channel-sandy reservoir, whose computing results show that the solutions of nonuniform adaptive upscaling method of 3D heterogeneous fluid equations in porous media are very approximating to that of fine grid blocks in the regions the permeability or porosity being abnormity and very approximating to that of coarsen grid blocks in the other region, however, the computing speed of adaptive upscaling method is 100 times faster than that of fine grid block method. The formula of sensitivity coefficients are derived from initial boundary value problems of fluid equations in porous media by Green's reciprocity principle. The sensitivity coefficients of wellbore pressure to permeability parameters are given by Peaceman's equation and calculated by means of numerical calculation method of 3D transient anisotropic fluid equation in porous media and verified by direct method. The computing results are in excellent agreement with those obtained by the direct method, which shows feasibility of the method. In the dissertation, the calculating examples are also given for 3D reservoir, channel-sandy reservoir and 3D multi-well reservoir, whose numerical results indicate: around the well hole, the value of the sensitivity coefficients of permeability is very large, the value of the sensitivity coefficients of porosity is very large too, but the sensitivity coefficients of porosity is much less than the sensitivity coefficients of permeability, so that the effect of the sensitivity coefficients of permeability for inversion of reservoir parameters is much greater than that of the sensitivity coefficients of porosity. Because computing the sensitivity coefficients needs to call twice the program of reservoir simulation in one iteration, realizing inversion of reservoir parameters must be sustained by the fast forward method. Using the sensitivity coefficients of permeability and porosity, conditioned on observed valley erosion thickness in wells (hard data), the inversion of the permeabilities and porosities in the homogeneous reservoir, homogeneous reservoir only along the certain direction and block reservoir are implemented by Gauss-Newton method or conjugate gradient method respectively. The results of our examples are very approximating to the real data of permeability and porosity, but the convergence rate of conjugate gradient method is much faster than that of Gauss-Newton method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cooperation is a typical prosocial behavior, and social psychologists have traditionally used sociometric methods to measure cooperation. This research is aimed to explore the development of children’s social value orientation and its impact on cooperation. Study 1 used two-choice decomposed games to measure the social value orientation of 9- , 11-, to 14-year-old children and adults. Results indicated that most 9-, 11-, 14-year-old children are classified as proselfs, and most adults are classified as prosocials. Compared to 9 years, there are more prosocial orientations and less competitive orientations among 11 years. But compared to 11 years, there are less prosocial orientations and more competitive orientations among 14 years. Study 2 used prisoner’s dilemma to assess cooperative behavior, thus investigated the impact of social value orientation on cooperative decision-making. Results indicated that, on one hand, children of prosocial orientation expected no more cooperation from others, but adults of prosocial orientation expected more cooperation from others. On the other hand, prosocials make more cooperative choices than proselfs, and they show more reciprocity towards cooperative others and more altruism towards non-cooperative others.