40 resultados para RAPID SYNTHESIS
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Polyethylenimine (PEI)-protected Prussian blue nanocubes have been simply synthesized by heating an acidic mixture of PEI, FeCl3, K3Fe(CN)(6), and KCI. The experiment results presented here demonstrate that the pH of the mixture plays an important role in controlling the shape and composition of the resultant product.
Resumo:
We have reported a facile and general method for the rapid synthesis of hollow nanostructures with urchinlike morphology. In-situ produced Ag nanoparticles can be used as sacrificial templates to rapidly synthesize diverse hollow urchinlike metallic or bimetallic (such as Au/Pt) nanostructures. It has been found that heating the solution at 100 degrees C during the galvanic replacement is very necessary for obtaining urchinlike nanostructures. Through changing the molar ratios of Ag to Pt, the wall thickness of hollow nanospheres can be easily controlled; through changing the diameter of Ag nanoparticles, the size of cavity of hollow nanospheres can be facilely controlled; through changing the morphologies of Ag nanostructures from nanoparticle to nanowire, hollow Pt nanotubes can be easily designed. This one-pot approach can be extended to synthesize other hollow nanospheres such as Pd, Pd/Pt, Au/Pd, and Au/Pt. The features of this technique are that it is facile, quick, economical, and versatile.
Resumo:
We report for the first time a simple low-cost electrochemical route to synthesis of diameter-controlled hierarchical flowerlike gold microstructures with "clean'' surfaces using gold nanoplates or nanopricks as building blocks without introducing any template or surfactant.
Resumo:
Macromolecule-protected sub-micrometer polyhedral gold nanocrystals have been facilely prepared by heating an aqueous solution containing poly (N-vinyl-2-pyrrolidone) (PVP) and HAuCl4 without adding other reducing agents. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), ultraviolet-visible-near-infrared spectroscopy (UV-vis-NIR), and x-ray diffraction (XRD) were employed to characterize the obtained polyhedral gold nanocrystals. It is found that the 10:1 molar ratio of PVP to gold is a key factor for obtaining quasi-monodisperse polyhedral gold nanocrystals. Furthermore, the application of polyhedral gold nanocrystals in surface-enhanced Raman scattering (SERS) was investigated by using 4-aminothiophenol (4-ATP) as a probe molecule. The results indicated that the sub-micrometer polyhedral gold nanocrystals modified on the ITO substrate exhibited higher SERS activity compared to the traditional gold nanoparticle modified film. The enhancement factor (EF) on polyhedral gold nanocrystals was about six times larger than that obtained on aggregated gold nanoparticles (similar to 25 nm).
Resumo:
The microwave (MW)-based thermal process was applied to the preparation of hexagon-shaped gold nanoplates. The fort-nation of gold nanoplates occurs rapidly in a single step, carried out by directly heating a reaction mixture of HAuCl4 with sodium citrate in an MW reactor. And the gold nanoplates were characterized by UV-visible spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The experimental results indicated that the sizes and morphologies of the gold nanomaterials strongly depend both on the heating methods and molar ratio of HAuCl4 to sodium citrate in the initial reaction mixture. At the molar ratio 5 : 4 (HAuCl4 to sodium citrate), hexagonal nanoplates with large Au (111) crystallographic facet were preferentially synthesized by the MW assistant method.
Resumo:
We reported the interesting finding that large scale uniform poly(o-phenylenediamine) nanobelts with several hundred micrometers in length, several hundred nanometers in width, and several ten nanometers in height can be rapidly yielded from an o-phenylenediamine-HAuCl4 aqueous solution without the additional introduction of other templates or surfactants at room temperature.
Resumo:
MnZn-ferrite/SiO2 nanocomposites with different silica content were successfully fabricated by a novel modified sol-gel auto-combustion method using citric acid as a chelating agent and tetraethyl orthosilicate (TEOS) as the source of silica matrix. The auto-combustion nature of the dried gel was studied by X-ray diffraction (XRD), Infrared spectra (IR), thermogravimetry (TG) and differential thermal analysis (DTA). Transmission electron microscope (TEM) observation shows that the MnZn-ferrite particles are homogeneously dispersed in silica matrix after auto-combustion of the dried gels. The magnetic properties vary with the silica content. The transition from the ferromagnetic to paramagnetic state is observed by Mossbauer spectra measurement with the increasing silica content. Vibrating sample magnetometer (VSM) shows that the magnetic properties of Mn0.65Zn0.35Fe2O4/SiO2 nanocomposites strongly depend on the silica content.
Resumo:
We report the synthesis of hexadecyltrimethylammonium bromide (CTAB)-stabilized cubic Pt nanoparticles by NaBH4 reduction of H2PtCl6 in aqueous CTAB solution. These Pt nanoparticles (average size of 7 nm) were well dispersed in aqueous solution and stable at least for 2 months. Addition of a trace amount of AgNO3 can alter the morphology of these Pt nanoparticles. More interestingly, the as-prepared uniform Pt nanoparticles were further developed into bigger Pt nanoagglomerates (similar to 20 to 47 nm) by a seed-mediate growth process. Dentritic and spherical Pt nanoagglomerates can be synthesized by altering the incubation time and their size can be tuned by controlling the amount of the seeds added.
Resumo:
Aryl polyester dendrimers and dendrons have been prepared by using 'branched monomer strategies', in which the surface and the focal point of the multi-branched monomer have been protected with two different kinds of protective group. The protective group for the focal point was stable during deprotection of the surface. Different wedges could be attached to the multi-branched monomers to form large dendrons whilst active dendrons could be attached to different cores to form various dendrimers with different wedges and different cores.
Resumo:
A simple and rapid synthesis method (denoted as modified impregnation method, MI) for PtRu/CNTs (MI) and PtRu/C (MI) was presented. PtRu/CNTs (MI) and PtRu/C (MI) catalysts were characterized by transmission electron microscopy (TEM) and X-ray diffractometry. It was shown that Pt-Ru particles with small average size (2.7 nm) were uniformly dispersed on carbon supports (carbon nanotubes and carbon black) and displayed the characteristic diffraction peaks of Pt face-centered cubic structure.
Resumo:
A simple and facile procedure to synthesize a novel hybrid nanoelectrocatalyst based on polyaniline (PANI) nanofiber-supported supra-high density Pt nanoparticles (NPs) or Pt/Pd hybrid NPs without prior PANI nanofiber functionalization at room temperature is demonstrated. This represents a new type of ID hybrid nanoelectrocatalyst with several important benefits. First, the procedure is very simple and can be performed at room temperature using commercially available reagents without the need for templates and surfactants. Second, ultra-high density small "bare" Pt NPs or Pt/Pd hybrid NPs are grown directly onto the surface of the PANI nanofiber, without using any additional linker. Most importantly, the present PANI nanofiber-supported supra-high density Pt NPs or Pt/Pd hybrid NPs can be used as a signal enhancement element for constructing electrochemical devices with high performance.
Resumo:
In this paper, we for the first time report a polyol method for large-scale synthesis of rectangular silver nanorods in the presence of directing agent and seeds. This method has some clear advantages including simplicity, high quality, and ease of scaleup. Silver nanowires or silver nanorods with a submicrometer diameter could also be facilely prepared when the reaction parameters are slightly changed. Furthermore, a liquid-liquid assembly strategy has been employed to construct uniform rectangular silver nanorod arrays on a solid substrate which could be used as surface-enhanced Raman scattering (SERS) substrates with high SERS activity, stability, and reproducibility. It is found that the SERS spectra obtained from the probe molecules with the different concentrations show different SERS intensifies. As the concentration of 4-aminothiophenol (4-ATP) or rhodamine 6G (R6G) increases, the SERS intensities progressively increase. The enhancement factor for 4-ATP and R6G should be as large as 5.06 x 10(4) or much larger than the value of 5.06 x 10(8), respectively.
Resumo:
Monodisperse oligo[(1,4-phenyleneethynylene)-alt-(2,5-thiopheneethynylene)]s, new candidates for molecular wires, were rapidly synthesized via an iterative divergent/convergent doubling strategy in solution as well as on Merrifield's resin.
Resumo:
A novel method for the preparation of oligothiophene molecular wires is described via a bi-directional solid-phase synthesis. Using an alternating sequence of bromination and Stille coupling reactions, oligomers were obtained up to the heptamer in excellent yield and purity.