35 resultados para RAINBOW COLOURINGS
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Interferons (IFNs), consisting of three major subfamilies, type I, type II (gamma) and type III (lambda) IFN, activate vertebrate antiviral defences once bound to their receptors. The three IFN subfamilies bind to different receptors, IFNAR1 and IFNAR2 for type I IFNs, IFN gamma R1 and IFN gamma R2 for type II IFN, and IL-28R1 and IL-10R2 for type III IFNs. In fish, although many types I and II IFN genes have been cloned, little is known about their receptors. In this report, two putative IFN-gamma receptor chains were identified and sequenced in rainbow trout (Oncorhynchus mykiss), and found to have many common characteristics with mammalian type II IFN receptor family members. The presented gene synteny analysis, phylogenetic tree analysis and ligand binding analysis all suggest that these molecules are the authentic IFN gamma Rs in fish. They are widely expressed in tissues, with IFN gamma R1 typically more highly expressed than IFN gamma R2. Using the trout RTG-2 cell line it was possible to show that the individual chains could be differentially modulated, with rIFN-gamma and rIL-1 beta down regulating IFN gamma R1 expression but up regulating IFN gamma R2 expression. Overexpression of the two receptor chains in RTG-2 cells revealed that the level of IFN gamma R2 transcript was crucial for responsiveness to rIFN-gamma, in terms of inducing gamma IP expression. Transfection experiments showed that the two putative receptors specifically bound to rIFN-gamma. These findings are discussed in the context of how the IFN gamma R may bind IFN-gamma in fish and the importance of the individual receptor chains to signal transduction. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Six strains of Gram-positive, catalase-negative, non-motile, irregular short rod-shaped Weissella bacteria, with width and length of 0.5-0.6 and 1.2-2.7 mu m were isolated from diseased rainbow trout Oncorhynchus mykiss (Walbaum) in winter of 2007 at a commercial fishery in Jingmen, Hubei province, China. The diseased rainbow trout exhibited hemorrhage in eyes, anal region, intestine and abdomen wall, petechia of liver, some fish with hydrocele in stomach. Six isolates had identical biochemical reactions, phylogenetic analysis of 16S rDNA sequences, amplified ribosomal DNA restriction analysis (ARDRA), enzymatic profile analysis and antimicrobial susceptibility results, indicating as a single clonal outbreak. But all were different from any other validated twelve Weissella species in the term of physiological and biochemical characters. It is indicated that isolates are phylogenetically closer to Weissella halotolerans, Weissella viridescens and Weissella minor on 16S rDNA phylogenetic analysis result, than to W halotolerans and W viridescens on the result of ARDRA study and enzymatic profile analysis. Antimicrobial susceptibility testing was used to scan effective drugs for the therapy of this disease. Experimental infection assays with one isolate were conducted and pathogenicity (by intraperitoneal injection) was demonstrated in rainbow trout O. mykiss (Walbaum) and crucian carp (Carassius auratus gibelio) fingerlings. Because no Weissella was detected in fish feedstuffs and pond water, the source of this pathogen remains unknown, and Weissella isolates were regarded as an opportunistic pathogen for rainbow trout. This is the first report of Weissella strains which can cause disease of cultured fish in the world. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Multiple type I interferons (IFNs) have recently been identified in salmonids, containing two or four conserved cysteines. In this work, a novel two-cysteine containing (2C) IFN gene was identified in rainbow trout. This novel trout IFN gene (termed IFN5) formed a phylogenetic group that is distinct from the other three salmonid IFN groups sequenced to date and had a close evolutionary relationship with IFNs from advanced fish species. Our data demonstrate that two subgroups are apparent within each of the 2C and 4C type I IFNs, an evolutionary outcome possibly due to two rounds of genome duplication events that have occurred within teleosts. We have examined gene expression of the trout 2C type I IFN in cultured cells following stimulation with lipopolysaccharide, phytohaemagglutinin, polyI:C or recombinant IFN, or after transfection with polyI:C. The kinetics of gene expression was also studied after viral infection. Analysis of the regulatory elements in the IFN promoter region predicted several binding sites for key transcription factors that potentially play an important role in mediating IFN5 gene expression.
Resumo:
In this report, recombinant interieukin-8 (rIL-8) was produced and its activity tested for the first time in fish. The rainbow trout rIL-8 was produced in Escherichia coli and purified using a 6xHis tag at the N-terminus. The rIL-8 induced a dose-dependent migration of head kidney leukocytes at concentrations from 0.1 to 10 ng/ml, with a peak response at 1 ng/ml. Trout rIL-8 also had a significant effect on superoxide production by head kidney cells, with maximal, activity at 0.1 and 1 ng/ml. When injected intraperitoneally into trout, rIL-8 had a clear effect on total leukocyte number in the peritoneal cavity, with increasing doses (up to 5 mu g) eliciting more cells. Of three leukocyte types distinguished, neutrophils were the dominant cell type, especially at higher rIL-8 concentrations. In contrast, the proportion of macrophages and lymphocytes decreased with rIL-8 administration, suggesting that they were not attracted at the same rate as neutrophils. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Further to the previous finding of the rainbow trout rtCATH_1 gene, this paper describes three more cathelicidin genes found in salmonids: two in Atlantic salmon, named asCATH_1 and asCATH_2, and one in rainbow trout, named rtCATH_2. All the three new salmonid cathelicidin genes share the common characteristics of mammalian cathelicidin genes, such as consisting of four exons and possessing a highly conserved preproregion and four invariant cysteines clustered in the C-terminal region of the cathelin-like domain. The asCATH_1 gene is homologous to the rainbow trout rtCATH_1 gene, in that it possesses three repeat motifs of TGGGGGTGGC in exon IV and two cysteine residues in the predicted mature peptide, while the asCATH_2 gene and rtCATH_2 gene are homologues of each other, with 96% nucleotide identity. Salmonid cathelicidins possess the same elastase-sensitive residue, threonine, as hagfish cathelicidins and the rabbit CAP18 molecule. The cleavage site of the four salmonid cathelicidins is within a conserved amino acid motif of QKIRTRR, which is at the beginning of the sequence encoded by exon W. Two 36-residue peptides corresponding to the core part of rtCATH_1 and rtCATH_2 were chemically synthesized and shown to exhibit potent antimicrobial activity. rtCATH_2 was expressed constitutively in gill, head kidney, intestine, skin and spleen, while the expression of rtCATH_1 was inducible in gill, head kidney, and spleen after bacterial challenge. Four cathelicidin genes have now been characterized in salmonids and two were identified in hagfish, confirming that cathelicidin genes evolved early and are likely present in all vertebrates.
Resumo:
We report the cloning of a novel antimicrobial peptide gene, termed rtCATH_1, found in the rainbow trout, Oncorhynchus mykiss. The predicted 216-residue rtCATH_1 prepropeptide consists of three domains: a 22-residue signal peptide, a 128-residue cathelin-like region containing two identifiable cathelicidin family signatures, and a predicted 66-residue C-terminal cationic antimicrobial peptide. This predicted mature peptide was unique in possessing features of different known (mammalian) cathelicidin subgroups, such as the cysteine-bridged family and the specific amino-acid-rich family. The rtCATH_1 gene comprises four exons, as seen in all known mammalian cathelicidin genes, and several transcription factor binding sites known to be of relevance to host defenses were identified in the 5' flanking region. By Northern blot analysis, the expression of rtCATH_1 was detected in gill, head kidney, and spleen of bacterially challenged fish. Primary cultures of head kidney leukocytes from rainbow trout stimulated with lipopolysaccharide or poly(I (.) C) also expressed riCATH_1. A 36-residue peptide corresponding to the core part of the fish cathelicidin was chemically synthesized and shown to exhibit potent antimicrobial activity and a low hemolytic effect. Thus, rtCATH_1 represents a novel antimicrobial peptide gene belonging to the cathelicidin family and may play an important role in the innate immunity of rainbow trout.
Resumo:
The sequences and gene organisation of two LEAP-2 molecules (LEAP-2A and LEAP-2B) from rainbow trout, Oncorhynchus mykiss are presented. Both genes consist of a 3 exon/2 intron structure, with exon sizes comparable to known mammalian genes. LEAP-2A notably differs from LEAP-2B in having larger introns and a larger 3'UTR. The predicted proteins contain a signal peptide and prodomain, followed by a mature peptide of 41 aa containing four conserved cysteines. The RXXR cleavage site to release the mature peptide was also conserved. Both genes were found to be constitutively expressed in the liver, with expression in the intestine, and to a lesser extent the skin, evident after bacterial challenge. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Rainbow trout historic H3 (RH3) promoter was cloned via high fidelity PCR. The cloned RH3 promoter was inserted into a promoter-lacked vector pEGFP-1, resulting in an expression vector pRH3FGFP-1. The linearized pRH3EGFP-1 was microinjected into fertilized eggs of rare minnows and the sequential embryogenetic processes were monitored under a fluorescent microscope. Strong green fluorescence was ubiquitously observed at as early as the gastrula stage and then in various tissues at the fry stage. The results indicate that RH3 promoter, as a piscine promoter, could serve in producing transgenic Cyprinoid such as rare minnow. Promoter activity of RH3, CMV and common carp beta-actin (CA) were compared in rare minnow by the expression of respective recombinant EGFP vectors. The expression of pCMVEGFP occurred earlier than the following one, pRH3EGFP-1, and then pCAEGFP during the embryogenesis of the transgenics. Their expression activities demonstrated that the CMV promoter is the strongest one, followed by the CA and then the RH3.
Resumo:
Rainbow trout fry (10 weeks post hatch) were immunized (injection or immersion) with sonicated formalin-killed trophonts of the fish parasitic ciliate Ichthyophthirius multifiliis. Challenge infections 22 days after immunization showed a relative protection represented by significantly fewer established parasites and lower prevalence in the immunized groups compared to the controls. Associations between the obtained protection and changes in differential leukocyte counts, haematocrit values, anti Ichthyophthirius multifiliis antibodies, mucous cell density and some epidermal cell markers were investigated. No changes in antibody titers, haematocrit values and mucous cell counts were associated with the response; however, a minor change in peripheral blood neutrophils and epidermal cell markers were found.
Resumo:
During the twentieth century evidence was presented which suggested the presence of various strains and races of the parasite Ichthyophthirius multifiliis Fouquet. However, ecological profiles of various parasite isolates from different climatic zones are sparse. Such stringent characterizations of parasite development at defined abiotic conditions could provide valuable criteria for the different races: profile comparison from various localities is one way to differentiate these strains. Baseline investigations were therefore performed on the associations between abiotic factors (temperature/salinity) and the development of theronts in tomocysts of I. multifiliis isolated from rainbow trout in a Danish trout farm. It was shown that tomocyst formation and theront development took place between 5 and 30degreesC. Development rates and sizes of theronts were clearly affected by temperature: theronts escaped tomocysts already after 16-27 h at 25degreesC and 30degreesC, whereas this process took 8-9 days at 5degreesC. Likewise, theront size decreased steadily from a maximum of 57.4 x 28.6 mum at 5degreesC to 28.6 x 20.0 mum at 30degreesC. This size variation was only partly associated with the number of theronts that appeared at different temperatures. The lowest number of theronts escaping from one tomocyst was indeed found at 5-7degreesC (mean 329-413). At 11.6, 17.0 and 21degreesC. the highest number of theronts appeared (mean 546-642). However, at 25 and 30degreesC, the number decreased (458 and 424, respectively). Additional studies on the salinity dependent development of the parasite (at 11.6degreesC) showed that salinities above 5 p.p.t. totally inhibited development. Even at 5 p.p.t. the developmental time significantly increased and the number of theronts produced from one tomocyst decreased.
Resumo:
A species-specific SCAR marker for rainbow trout, which was used to detect adulteration and fraudulent labeling in Atlantic salmon products, has been developed based on the AFLP analysis and evaluated in this study. The SCAR marker could be amplified and visualized in 1% agarose gel in all tested rainbow trout samples and absent in all salmon samples. Using DNA admixtures, the detection of 1% (0.5 ng), 10% (5 ng) rainbow trout DNA in Atlantic salmon DNA for fresh and processed samples, respectively was readily achieved. The molecular approach was sensitive and demonstrated to be a rapid and reliable method for identifying frauds in salmon products and could be extended for applications of species identification in food industry.
Resumo:
The authors report the investigation of filament and supercontinuum generation by focusing a femtosecond laser beam into water doped with silver nanoparticles. The silver nanoparticles enhance the nonlinear optical response of water, leading to broadening of supercontinuum spectra in self-focused femtosecond filaments. During the propagation of the supercontinuum light in the filament, the silver nanoparticles preferentially scatter the short-wavelength light near the plasmon resonant wavelength peak, followed by the scattering of the long-wavelength light. Thus, a side view of the filament shows a full-color spectrum in the visible range, which is herein called "rainbow filament." (c) 2007 American Institute of Physics.
Resumo:
In this study, the immunoglobulin M heavy chain gene of European eel (Anguilla anguilla) was cloned and analyzed. The full-length cDNA of the IgM heavy chain gene (GenBank accession no. EF062515) has 2089 nucleotides encoding a putative protein of 581 amino acids. The IgM heavy chain was composed of leader peptide (L), variable domain (VH), CH1, CH2. Hinge, CH3, CH4, and C-terminus and two novel continuous putative N-glycosylation sites were found close to the second cysteine of CH3 in A. anguilla-H1 and A. anguilla-H2. The deduced amino acid sequence of the European eel IgM heavy chain constant region shared similarities to that of the Ladyfish (Elops saurus). Atlantic salmon (Salmo salar), rainbow trout (Oncorhynchus mykiss), Grass carp (Ctenopharingodon idella), Common carp (Cyprinus carpio), Channel catfish (Ictalurus punctatus), and the orange-spotted grouper (Epinephelus coioides) with the identity of 46.1%, 39.7%, 38.9%, 32.4%, 32.3%, 31.7%, and 30.7%, respectively. The highest level of IgM gene expression was observed in the kidney, followed by the spleen, gills, liver, muscle and heart in the apparently healthy European eels. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Complement-mediated killing of pathogens through lytic pathway is an important effector mechanism of innate immune response. C9 is the ninth member of complement components, creating the membrane attack complex (MAC). In the present study, a putative cDNA sequence encoding the 650 amino acids of C9 and its genomic organization were identified in grass carp Ctenopharyngodon idella. The deduced amino acid sequence of grass carp C9 (gcC9) showed 48% and 38.5% identity to Japanese flounder and human C9, respectively. Domain search revealed that gcC9 contains a LDL receptor domain, an EGF precursor domain, a MACPF domain and two TSP domain located in the N-terminal and C-terminal, respectively. Phylogenetic analysis demonstrated that gcC9 is clustered in a same clade with Japanese flounder, pufferfish and rainbow trout C9. The gcC9 gene consists of 11 exons with 10 introns, spacing over approximately 7 kb of genomic sequence. Analysis of gcC9 promoter region revealed the presence of a TATA box and some putative transcription factor such as C/EBP, HSF, NF-AT, CHOP-C, HNF-3B, GATA-2, IK-2, EVI- 1, AP-1, CP2 and OCT-1 binding sites. The first intron region contains C/EBPb, HFH-1 and Oct-1 binding sites. RT-PCR and Western blotting analysis demonstrated that the mRNA and protein of gcC9 gene have similar expression patterns, being constitutively expressed in all organs examined of healthy fish, with the highest level in hepatopancreas. By real-time quantitative RT-PCR analysis, gcC9 transcripts were significantly up-regulated in head kidney, spleen, hepatopancreas and down-regulated in intestine from inactivated fish bacterial pathogen Flavobacterium columnare-stimulated fish, demonstrating the role of C9 in immune response. (c) 2007 Elsevier B.V. All rights reserved.