73 resultados para RAIN

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of acid rain SO42− deposition on peatland CH4 emissions was examined by manipulating SO42− inputs to a pristine raised peat bog in northern Scotland. Weekly pulses of dissolved Na2SO4 were applied to the bog over two years in doses of 25, 50, and 100 kg S ha−1 yr−1, reflecting the range of pollutant S deposition loads experienced in acid rain-impacted regions of the world. CH4 fluxes were measured at regular intervals using a static chamber/gas chromatographic flame ionization detector method. Total emissions of CH4 were reduced by between 21 and 42% relative to controls, although no significant differences were observed between treatments. Estimated total annual fluxes during the second year of the experiment were 16.6 g m−2 from the controls and (in order of increasing SO42− dose size) 10.7, 13.2, and 9.8 g m−2 from the three SO42− treatments, respectively. The relative extent of CH4 flux suppression varied with changes in both peat temperature and peat water table with the largest suppression during cool periods and episodes of falling water table. Our findings suggest that low doses of SO42− at deposition rates commonly experienced in areas impacted by acid rain, may significantly affect CH4 emissions from wetlands in affected areas. We propose that SO42− from acid rain can stimulate sulfate-reducing bacteria into a population capable of outcompeting methanogens for substrates. We further propose that this microbially mediated interaction may have a significant current and future effect on the contribution of northern peatlands to the global methane budget.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the finite volume method, a 2D numerical model for seepage in unsaturated soil has been established to study the rainfall infiltration in the fractured slope.The result shows that more rain may infiltrate into the slope due to existing fracture and then the pore pressure rises correspondingly. Very probably, it is one of the crucial factors accounting for slope failure. Furthermore a preliminary study has been conducted to investigate the influence of various fracture and rainfall factors such as the depth, width and location of a crack, surface condition, rainfall intensity and duration. Pore pressure and water volumetric content during the transient seepage are carefully examined to reveal the intrinsic mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mathematical model for the rain infiltration in the rock-soil slop has been established and solved by using the finite element method. The unsteady water infiltrating process has been simulated to get water content both in the homogeneous and heterogeneous media. The simulated results show that the rock blocks in the rock-soil slop can cause the wetting front moving fast. If the rain intensity is increased, the saturated region will be formed quickly while other conditions are the same. If the rain intensity keeps a constant, it is possible to accelerate the generation of the saturated region by properly increasing the vertical filtration rate of the rock-soil slop. However, if the vertical filtration rate is so far greater than the rain intensity, it will be difficult to form the saturated region in the rock-soil slop. The numerical method was verified by comparing the calculation results with the field test data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main factors influencing soil erosion include the net rain excess, the water depth, the velocity, the shear stress of overland flows, and the erosion-resisting capacity of soil. The laws of these factors varying with the slope gradient were investigated by using the kinematic wave theory. Furthermore, the critical slope gradient of erosion was driven. The analysis shows that the critical slope gradient of soil erosion is dependent on grain size, soil bulk density, surface roughness, runoff length, net rain excess, and the friction coefficient of soil, etc. The critical slope gradient has been estimated theoretically with its range between 41.5 degrees similar to 50 degrees.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mathematical model for the rain infiltration in the rock-soil slop has been established and solved by using the finite element method. The unsteady water infiltrating process has been simulated to get water content both in the homogeneous and heterogeneous media. The simulated results show that the rock blocks in the rock-soil slop can cause the wetting front moving fast. If the rain intensity is increased, the saturated region will be formed quickly while other conditions are the same. If the rain intensity keeps a constant, it is possible to accelerate the generation of the saturated region by properly increasing the vertical filtration rate of the rock-soil slop. However, if the vertical filtration rate is so far greater than the rain intensity, it will be difficult to form the saturated region in the rock-soil slop. The numerical method was verified by comparing the calculation results with the field test data.