2 resultados para RADIOCARBON AGE CALIBRATION
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
High molecular weight dissolved organic matter (HMW-DOM, > 1000 Da) represents a major fraction (> 30%) of dissolved organic carbon (DOC) in the ocean and thus plays an important role in the global biogeochemical cycling of carbon and many other elements. Its organic sources and formation mechanisms, however, are still not well understood especially in estuarine and coastal regions where multiple natural and anthropogenic sources contribute to total HMW-DOM. In this paper we report our measurements of natural radiocarbon (C-14) abundances and stable carbon isotope (C-13) compositions of the major biochemical compound classes: amino acids, carbohydrates and lipids separated from eight HMW-DOM samples collected from five US estuaries as part of our on-going study of sources, distribution and transport of chromophoric dissolved organic matter (CDOM) in estuarine and coastal waters. Distinct differences in both C-14 and C-13 values were found among the bulk HMW-DOM samples as well as the individual compound classes. Radiocarbon ages of the major compound classes varied by as much as 27,000 years in a single sample. The calculated average radiocarbon ages of the compound fractions of HMW-DOM indicate that the total lipid fraction is very "old", while the acid-insoluble fraction is slightly younger. Total amino acid and carbohydrate fractions, however, have relatively modern apparent C-14 ages. The significant variability in C-14 ages among the compound classes indicates not only multiple organic carbon sources but also different formation and turnover pathways controlling the cycling of different biochemical components of HMW-DOM in estuarine and coastal waters. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Using a radiolarian-based transfer function, mean annual sea surface temperature (SST) and seasonal temperature range are reconstructed through the last 10,500yrs in the northern Okinawa Trough. Down-core SST estimates reveal that throughout the Holocene the changes of mean annual SST display a three-step trend: (i) an early Holocene continuous warming between 10,500 and 8500yr BP which ends up with a abrupt cooling at about 8200yr BP; (ii) a relatively stable middle Holocene with high SST that lasted until 3200yr BP; and (iii) a late-Holocene distinct SST decline between 3200 and 500yr BP. This pattern is in agreement with the ice core and terrestrial paleoclimatic records in the Chinese continent and other regions of the world. Five cooling events with abrupt mean annual SST drops, which occur at similar to 300-600, 1400, 3100, 4600-5100 and 8200yr BP, are recognized during the last 10,500yrs. Comparison of our results with records of GISP2 ice core and marine sediment in North Atlantic region suggests these cooling events are strongly coupled, which implies a possible significant climatic correlation between high- and low-latitude areas. (C) 2007 Elsevier Ltd and INQUA. All rights reserved.