55 resultados para RADIATION EFFECT
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The radiation-induced chain-scission and racemization of isotactic poly(methylmethacrylate)(iso-PMMA) in amorphous and semi-crystalline state as well as in solution have been studied with nuclear magnetic resonance and molar mass deter-mination. It is shown that the chain-scission is dominant for iso-PMMA in dilute solution while the racemization reaction is not favorable in this case. On the contrary, the racemization is favorable when iso-PMMA was irradiated in its crystalline state while chain-scission is not. Such experimental results could be well explained by the mobility of molecules and "cage effect". The hypothesis, we proposed previously that the chain-scission, racemization and recombination are in competition and the final result depends on the state of molecular motion at which iso-PMMA was irradiated, has been verified verified once again.
Resumo:
A series of tellurite glasses of composition, 75TeO(2)-20ZnO-(5 - x)La2O3-xEr(2)O(3) (x = 0.05, 0.1, 0.3, 0.6, 1.0, 2.0, and 3.0 mol%) with different hydroxl content were prepared. The effect of Er3+ and OH- groups concentration on the emission properties of Er3+: I-4(13/2) -> I-4(15/2) transition in tellurite glasses was investigated. The constant KOH-Er for Er3+ in tellurite glasses, which represents the strength of interaction between Er3+ and OH- groups in the case of energy migration, was about 14 x 10(-19) cm(4) s(-1). The interaction parameter C-Er,C-Er for the migration rate of Er3+ : 4I(13/2) -> I-4(13/2) transition in tellurite glass was 46 x 10(-40) cm(2), which indicates that concentration quenching in Er3+-doped modified tellurite glass for a given Er3+ concentration is much stronger than in silicate and phosphate glasses. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
该文采用L(+)-半胱氨酸及其衍生物和原卟啉Ⅸ二钠盐等生物分子中所没有的铁元素的重离子注入和多种现代仪器分析技术,研究了低能重离子束对生物分子的辐射照应.总之,荷能铁离子束辐照生物分子不但可引起分子的结构损伤,产生新的分子产物,也可沉积在新的改性分子产物之中,直接证实了注入重离子的质量沉积效应,对重离子束生物学的发展提供了重要的理论支持.该文的研究结果还预示着重离子束必将在生物和药物分子改性等研究领域具有重要的实际应用价值.
Resumo:
For the flame spread over thermally thin combustibles in an atmosphere, if the atmosphere cannot emit and absorb the thermal radiation (e.g. for atmosphere Of O-2-N-2), the conductive heat transfer from the flame to the fuel surface dominates the flame spread at lower ambient atmosphere. As the ambient pressure increases, the flame spread rate increases, and the radiant heat transfer from the flame to the fuel surface gradually becomes the dominant driving force for the flame spread. In contrast, if the atmosphere is able to emit and absorb the thermal radiation (e.g. for atmosphere Of O-2-CO2), at lower pressure, the heat transfer from flame to the fuel surface is enhanced by the radiation reabsorption of the atmosphere at the leading edge of the flame, and both conduction and thermal radiation play important roles in the mechanism of flame spread. With the increase in ambient pressure, the oxygen diffuses more quickly from ambient atmosphere into the flame, the chemical reaction in the flame is enhanced, and the flame spread rate increases. When the ambient pressure is greater than a critical value, the thermal radiation from the flame to the solid surface is hampered by the radiation reabsorption of ambient atmosphere with the further increase in ambient pressure. As a result, with the increase in ambient pressure, the flame spread rate decreases and the heat conduction gradually dominates the flame spread over the fuel surface.
Resumo:
The effect of implanting nitrogen into buried oxide on the top gate oxide hardness against total irradiation does has been investigated with three nitrogen implantation doses (8 x 10(15), 2 x 10(16) and 1 x 10(17) cm(-2)) for partially depleted SOI PMOSFET. The experimental results reveal the trend of negative shift of the threshold voltages of the studied transistors with the increase of nitrogen implantation dose before irradiation. After the irradiation with a total dose of 5 x 10(5) rad(Si) under a positive gate voltage of 2V, the threshold voltage shift of the transistors corresponding to the nitrogen implantation dose 8 x 10(15) cm(-2) is smaller than that of the transistors without implantation. However, when the implantation dose reaches 2 x 10(16) and 1 x 10(17) cm(-2), for the majority of the tested transistors, their top gate oxide was badly damaged due to irradiation. In addition, the radiation also causes damage to the body-drain junctions of the transistors with the gate oxide damaged. All the results can be interpreted by tracing back to the nitrogen implantation damage to the crystal lattices in the top silicon.
Resumo:
The effect of proton radiation on a superluminescent diode (SLD) was studied, and the radiation damage from different energies was compared. The results reveal that the optical power degradation is greater from 350 KeV protons than from 1 MeV protons. Analysis of SLD characteristics after irradiation shows that the main effect of radiation is damage within the active region. At the same time, the results also show that quantum-well (QW) SLDs are far less sensitive to radiation than double-heterojunction (DH) SLDs. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Purpose: To investigate the effects of gamma-ray radiation on the physiological, morphological characters and chromosome aberrations of minitubers. Materials and methods: Minitubers of one potato cultivar, 'Shepody', were irradiated with 8 doses of gamma-rays (0, 10, 20, 30, 40, 50, 60, 70 and 80 Gy [Gray]) to investigate the effects of radiation on emergence ability, plant height and root length, morphological variations, chromosome aberrations, M-1 (first generation mutants) tuber number and size of minituber plants. Results: Compared with the non-irradiated controls, the whole period of emergence was prolonged by 10-15 days for minitubers treated with gamma-ray radiation, but low doses of radiation (10, 20 and 30 Gy) promoted the emergence percentage of minitubers. With an increase in radiation dose, the emergence percentage, plant height and root length of minituber plants were significantly inhibited at 40 and 50 Gy. No emergence occurred at 60 Gy and higher doses. After radiation, a series of morphological variations and chromosome aberrations appeared in minituber plants. Radiation with 20 Gy promoted tuber formation, and the average number and diameter of M-1 tubers per plant were significantly increased over the control by 71% and 34%, respectively. Conclusion: Low doses of radiation (10-30 Gy) might be used as a valuable parameter to study the improvement of minitubers by gamma-ray radiation treatment.
Resumo:
The PtRu/C electrocatalyst with high loading (PtRu of 60 wt%) was prepared by synergetic effect of ultrasonic radiation and mechanical stirring. Physicochemical characterizations show that the size of PtRu particles of as-prepared PtRu/C catalyst is only several nanometers (2-4 nm), and the PtRu nanoparticles were homogeneously dispersed on carbon surface. Electrochemistry and single passive direct methanol fuel cell (DMFC) tests indicate that the as-prepared PtRu/C electrocatalyst possessed larger electrochemical active surface (EAS) area and enhanced electrocatalytic activity for methanol oxidation reaction (MOR). The enhancement could be attributed to the synergetic effect of ultrasound radiation and mechanical stirring, which can avoid excess concentration of partial solution and provide a uniform environment for the nucleation and growth of metal particles simultaneously hindering the agglomeration of PtRu particles on carbon surface.
Resumo:
BACKGROUND: Poly(butylene adipate-co-terephthalate) (PBAT) has attracted wide interest as a biodegradable polymer. However, its use is restricted in certain applications due to its low melting point.RESULTS: PBAT was treated using gamma-radiation. The radiation features were analyzed using Soxhlet extraction, and the ratio of chain scission and crosslinking and gelation dose were determined using the classical Charlesby-Pinner equation. The results showed that PBAT is a radiation-crosslinkable polymer. The degree of crosslinking increased with increasing radiation dose; the relation between sol fraction and dose followed the Charlesby-Pinner equation. Differential scanning calorimetry analyses showed that the melting temperature (T-m) and the heat of fusion (Delta H-m) of PBAT exhibited almost no change in the first scan. The second scan, however, showed a decrease in T-m and Delta H-m. The glass transition temperature of irradiated PBAT increased with increasing radiation dose.
Resumo:
Radiation crosslinking of polymers mainly depends on the structure of polymer chain. The flexibility and mobility of chain directly influence the possibility of the reactive radicals recombination. Flexible chain is easier to crosslink than rigid-chain polymer. The latter must be crosslinked at high temperature, as most polymers can only crosslink above their melting point. Structural effect also influences the mechanism of radiation crosslinking of polymers. We find from the results in literature and in our laboratory that, the flexibility chain polymer mainly crosslinked with H type, but the rigid chain polymer mainly crosslinked with Y type. (C) 2001 Published by Elsevier Science Ltd.
Resumo:
trans-1,4-Polybutadiene (PTBD) was synthesized by rare earth catalyst system, The effect of electron radiation on phase transition from monoclinic phase to hexagonal phase was observed by TEM, Electron diffraction patterns of monoclinic phase, hexagonal phase and two coexistent phases were recorded, The mechanism of phase transition was also discussed in this paper.