56 resultados para RADAR OBSERVATIONS
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Neutral winds and electric fields in the ionospheric F layer play important roles in the variations of the ionosphere, and also affect the thermospheric circulation via the close coupling between the ionosphere and the thermosphere. By now, the neutral winds and electric drifts are generally observed with ground-based Fabry-Perot interferometers (FPI) and incoherent scatter radars (ISR), rockets, and satellite-borne instrument. Based on the servo theory, the ionospheric equivalent winds, which include the information of both the neutral winds and electric fields, can be derived from these characteristic parameters observed by ionosondes. This indirect derivation has potential values in climatological researches and space weather forecast. With the data set of the incoherent scatter radar observations at Millstone Hill, USA, from 1976 to 2006, we statistically analyzed the climatological variations of the vertical component of the equivalent winds (VEWs) over Millstone Hill, which are derived from the ionospheric key parameters (the peak electron number density and peak height of the F2 layer, NmF2 and hmF2) on the basis of the servo theory, Liu's method, and measurements from the ion line-of-sight velocity as well. The main results of this analysis are summarized as follows: (1) The values of VEWs over Millstone Hill during nighttime are stronger than in the daytime, and the upward drift dominates most of the day. In 1993, Hagan found that the component of the neutral winds in the magnetic meridion in daytime is weaker than during nighttime under both solar maximum and minimum conditions; he also found that the equatorward winds dominate most of the day. Both results suggest that the thermosphere in Millstone Hill is modulated by the aurorally driven high-latitude circulation cell; that is, during geomagnetic quiet periods, the average auroral activity is strong enough to drive thermospheric circulation equatorward for most of the day at Millstone Hill. Moreover, since ion drag is the strongest during daytime when F region densities are enhanced by photoionization, the wind speeds are smaller during the daytime than in the nighttime. (2) There is equinoctial symmetry in VEWs at Millstone Hill. The amplitudes and phases of VEWs in spring are quite similar to those in autumn. In contrast, the nighttime upward drift in winter is weaker than in summer and the difference becomes more significant with increasing solar activity. This solstice asymmetry indicates that, the aurorally driven circulation in the northern hemisphere at Millstone Hill latitude is weaker in winter due to arctic darkness, because the subsolar point is in the southern hemisphere. (3) The comparison of the VEWs derived from three methods, i.e., the servo theory, Liu's method, and the ISR ion line-of-sight velocity measurements, indicates that the amplitudes and main phase tendencies of these VEWs accord well with each other during nighttime hours. However, the case in the daytime is relatively worse. This daytime discrepancy can be explained in terms of the effects of photochemical processes and the choices of the servo constants. A larger servo constant gives a stronger plasma drift in daytime. Therefore, this study tells how important to choose a suitable constant for deriving VEWs at Millstone Hill.
Resumo:
The ability of the Evpatoria RT-70 radar complex to perform research on space debris was investigated in four trial experiments during 2001-2003. The echo-signals of 25 objects at geostationary, highly elliptical and medium-altitude orbits were recorded on magnetic tapes at radio telescopes in Russia, Italy, China and Poland. The multi-antenna system configuration gives potential to supplement the classic radar data with precise angular observations using the technique of Very Long Baseline Interferometry. The first stage of such processing was fulfilled by the correlator in N. Novgorod, Russia. The cross-correlation of transmitted and received signals was obtained for the 11 objects on the Evpatoria-Bear Lakes, Evpatoria-Urumqi and Evpatoria-Noto baselines. This activity also promoted developing the optical observations of geostationary objects, conducted for the improvement of the radar target ephemerides. (C) 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
A new wave retrieval method for the Along-Track Interferometric Synthetic Aperture Radar (AT-InSAR) phase image is presented. The new algorithm, named parametric retrieval algorithm (PRA), uses the full nonlinear mapping relations. It differs from previous retrieval algorithms in that it does not require a priori information about the sea state or the wind vector from scatterometer data. Instead, it combines the observed AT-InSAR phase spectrum and assumed wind vector to estimate the wind sea spectrum. The method has been validated using several C-band and X-band HH-polarized AT-InSAR observations collocated with spectral buoy measurements. In this paper, X-band and C-band HH-polarized AT-InSAR phase images of ocean waves are first used to study AT-InSAR wave imaging fidelity. The resulting phase spectra are quantitatively compared with forward-mapped in situ directional wave spectra collocated with the AT-InSAR observations. Subsequently, we combine the parametric retrieval algorithm (PRA) with X-band and C-band HH-polarized AT-InSAR phase images to retrieve ocean wave spectra. The results show that the ocean wavelengths, wave directions, and significant wave heights estimated from the retrieved ocean wave spectra are in agreement with the buoy measurements.
Resumo:
A new nonlinear integral transform of ocean wave spectra into Along-Track Interferometric Synthetic Aperture Radar (ATI-SAR) image spectra is described. ATI-SAR phase image spectra are calculated for various sea states and radar configurations based on the nonlinear integral transform. The numerical simulations show that the slant range to velocity ratio (R/V), significant wave height to ocean wavelength ratio (H-s/lambda), the baseline (2B) and incident angle (theta) affect ATI-SAR imaging. The ATI-SAR imaging theory is validated by means of Two X-band, HH-polarized ATI-SAR phase images of ocean waves and eight C-band, HH-polarized ATI-SAR phase image spectra of ocean waves. It is shown that ATI-SAR phase image spectra are in agreement with those calculated by forward mapping in situ directional wave spectra collected simultaneously with available ATI-SAR observations. ATI-SAR spectral correlation coefficients between observed and simulated are greater than 0.6 and are not sensitive to the degree of nonlinearity. However, the ATI-SAR phase image spectral turns towards the range direction, even if the real ocean wave direction is 30 degrees. It is also shown that the ATI-SAR imaging mechanism is significantly affected by the degree of velocity bunching nonlinearity, especially for high values of R/V and H-s/lambda.
Resumo:
This paper reports a multi-scale study on damage evolution process and rupture of gabbro under uniaxial compression with several experimental techniques, including MTS810 testing machine, white digital speckle correlation method, and acoustic emission technique. In particular, the synchronization of the three experimental systems is realized for the study of relationship of deformation and damage at multiple scales. It is found that there are significant correlation between damage evolution at small and large length scales, and rupture at sample scale, especially it displays critical sensitivity at multiple scales and trans-scale fluctuations.
Resumo:
Deformation twins have been observed in nanocrystalline (nc) fcc metals with medium-to-high stacking fault energies such as aluminum, copper, and nickel. These metals in their coarse-grained states rarely deform by twining at room temperature and low strain rates. Several twinning mechanisms have been reported that are unique to nc metals. This paper reviews experimental evidences on deformation twinning and partial dislocation. emissions from grain boundaries, twinning mechanisms, and twins with zero-macro-strain. Factors that affect the twinning propensity and recent analytical models on the critical grain sizes for twinning are also discussed. The current issues on deformation twinning in nanocrystalline metals are listed.
Resumo:
Crack propagation and strain field evolution in two metallic glassy ribbons are studied using in situ scanning electron microscopy and the white digital speckle correlation method. Strain state at the crack tip, which depends heavily on the fracture toughness, plays a key role in fracture. A high degree of shear strain concentration in tough glassy ribbon can satisfy the critical shear strain, resulting in shear fracture, whereas a high degree of linear strain concentration in brittle glassy ribbon can initiate normal tensile fracture. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
How fibroin molecules fold themselves and further self-assemble into aggregations with specific structures when the solution concentration increases is the key to understanding the natural silk-forming process of the silkworm. A regenerated Bombyx mori silk fibroin solution was prepared, and serially diluted solutions were coated on aminated coverslips. Atomic force microscopy (AFM) observations of the topography of fibroin molecules revealed a transformation from rodlike aggregations 100-200 nm long to small globules 50 mn in diameter with decreasing concentrations. When the incubation duration increased, the aggregations of fibroin molecules showed a self-assembling process, which was measured with AFM. In particular, after the molecules were incubated for more than 20 min, rodlike micelles formed and were distributed evenly on the surface of the aminated slides. Flow chamber technology was used to study the effect of the shear loading on the topography of the fibroin molecular aggregations. After a shear loading was applied, larger rodlike particles formed at a higher incubation concentration in comparison with those at a lower concentration and were obviously oriented along the direction of fluid flow.
Resumo:
Two rare trematode species so far reported in the genus Phyllodistomum Braun, 1899, P. pawlovskii (Zmeev, 1936) and P. serrispatula Chin, 1963, were found in the urinary system the yellow catfish Pelteobagrus fulvidraco (Richardson) of Bao'an Lake (prevalence 8 %) and the swamp eel Monopterus albus (Zouiev) of Liangzi Lake (prevalence 6 9/6), respectively, from the Hubei Province, central China. In contrast to the original description, P. pawlovskii showed a considerable morphological variability particularly in the shape, size and topography of testes. A unique morphological feature of P. serrispatula is the presence of many conspicuous lateral outgrowths on the hindbody and, principally based on this character, a new genus Neophyl-lodistomum is erected (type species N. serrispatula (Chin, 1963) comb. n.)) to accommodate this species. Both trematode species are briefly redescribed. P. pawlovskii and N. serrispatula are reported for the first time from the Hubei Province and the former from the Yangtze River drainage system.
Resumo:
The authors made 39 surveys (a total of 161 days) in the Tian-e-Zhou Oxbow of the Yangtze River, China, for observing 13 Yangtze finless porpoises (Neophocaena phocaenoides asiaeorientalis) captured from the main stream of the Yangtze River and 7 juveniles born in the oxbow from January 1997 to July 2000. The animals were usually divided into several "core" groups and moved around in shallow, muddy-bottom areas with the largest individual in the lead. Each core group was composed of 2-3 animals (either 2 adults, 1 adult and 1 juvenile, 2 adults and 1 juvenile, or 2 adults and 1 calf). Newly-released animals joined the other animals first, and then reorganized their own groups one or two days later. Average breath interval was 34.4 s (+/- s.d. 4.39) for individuals in the group. The animals mated from May through June and gave birth during the second and last ten days of April of the next year. The gestation period was estimated as 310 - 320 days. Calves over 5 months old began to eat small fish. The distance of calves swimming apart from their suspected mothers increased each month. These findings will help in the management of the reserve to protect this unique freshwater porpoise.