10 resultados para Réseau de co-expression
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Histo-blood group antigens CD173 (H2) and CD174 (Lewis Y) are known to be developmentally regulated carbohydrate antigens which are expressed to a varying degree on many human carcinomas. We hypothesized that they might represent markers of cancer-initiating cells (or cancer stem cells, CSC). In order to test this hypothesis, we examined the co-expression of CD173 and CD174 with stem cell markers CD44 and CD133 by flow cytometry analysis, immunocytochemistry, and immunohistochemistry on cell lines and tissue sections from breast cancer. In three breast cancer cell lines, the percentage of CD173(+)/CD44(+) cells ranged from 17% to > 60% and of CD174(+)/CD44(+) from 21% to 57%. In breast cancer tissue sections from 15 patients, up to 50% of tumor cells simultaneously expressed CD173, CD174, and CD44 antigens. Co-expression of CD173 and CD174 with CD133 was also observed, but to a lesser percentage. Co-immunoprecipitation and sandwich ELISA experiments on breast cancer cell lines suggested that CD173 and CD174 are carried on the CD44 molecule. The results show that in these tissues CD173 (H2) and CD174 (LeY) are associated with CD44 expression, suggesting that these carbohydrate antigens are markers of cancer-initiating cells or of early progenitors of breast carcinomas.
Resumo:
Modification of proteins by ubiquitination plays important roles in various cellular processes. During this process, the target specificity is determined by ubiquitin ligases. Here we identify RNF220 (RING finger protein 220) as a novel ubiquitin ligase for Sin3B. As a conserved RING protein, RNF220 can bind E2 and mediate auto-ubiquitination of itself. Through a yeast two-hybrid screen, we isolated Sin3B as one of its targets, which is a scaffold protein of the Sin3/HDAC (histone deacetylase) corepressor complex. RNF220 specifically interacts with Sin3B both in vitro and in vivo. Sin3B can be regulated by the ubiquitin-proteasome system. Co-expression of RNF220 promotes the ubiquitination and proteasomal degradation of Sin3B. Taken together, these results reveal a new mechanism for regulating the Sin3/HDAC complex. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
In eucaryotes, gene expression and control is a complex nonlinear process, where there are many control mechanisms and ways, both physic, chemical and informational control. By the exploration from the angle of biocybernetics, the authors suggest that gene expression is a co-control process. In this process, physic, chemical and informational feedback controls are associated and influential each other, and are cross and co-functional. The physic, chemical and informational control ways composed an order non-linear feedback control system in eucaryotes.
Resumo:
Midkine (Mdk) genes have been revealed to have different expression patterns in vertebrates and therefore, additional studies on Mdk expression patterns are required in more species. In this study, CagMdkb has been cloned and characterized from a SMART cDNA library of 10-somite stage embryos of Carassius auratus gibelio. Its full length cDNA is 1091 bp and encodes a sequence of 147 amino acids, which shows 97.3% identity to zebrafish Mdkb on the amino acid level. RT-PCR analysis reveals that CagMdkb is first transcribed in gastrula embryos and maintains a relatively stable expression level during subsequent embryogenesis. Western blot analysis reveals a 19 kDa maternal CagMdkb protein band and the zygotic CagMdkb protein is expressed from gastrula stage. At around 10 somite stage, the 19 kDa CagMdkb is processed to another protein band of about 17 kDa, which might be the secreted form with the 21-residue signal peptide removed. With immunofluorescence analysis, maternal CagMdkb protein was found to be localized in each blastamere cell of early embryos. The zygotic CagMdkb positive fluorescence signal was detected from a pair of large neurons at 18-somite stage. At the later stages, CagMdkb protein was also extended to numerous small neurons in the forebrain, midbrain and hindbrain, as well as to nerve fibers in the spinal cord. Co-localization with 3A10 antibody revealed CagMdkb immunoreactivity on developing Mauthner neurons, a member of reticulospinal neurons. In addition, ectopic expression of CagMdkb in early embryos of gibel carp and zebrafish suppressed head formation and CagMdkb function was found to depend on secretory activity. All these findings indicate that CagMdkb plays an important role in neural development during gibel carp embryogenesis and there is functional conservation of Mdkb in fish head formation.
Resumo:
Vitellogenin (Vtg) is the precursor of yolk protein. Its expression and secretion are estrogen-regulated and are crucial for oocyte maturation. An in vitro xenoestrogen screening model was established by measuring Vtg induction in cultured primary hepatocytes from crucian carp. Vtg production was detected by biotin-avidin sandwich ELISA method while Vtg and cytochrome P4501A1 (CYP1A1) mRNA induction were measured by semi- quantitative PCR-primer dropping technique. Vtg and Vtg mRNA were dose-dependently induced by diethylstilbestrol (DES, 0.2-200 ng/mL) in hepatocytes of crucian carp. Co-treatment of the DES-induced hepatocytes with either 2,3,7,8-TCDD (TCDD, 0.1-4 pg/mL) or benzo[a]pyrene (B[a]P, 5-1000 ng/mL) resulted in a reduction of Vtg production and an increment of CYP1A1 mRNA expression both in a dose dependent manner, indicating the anti-estrogenic effects of the compounds. However, at lower tested concentrations, TCDD (0.1, 0.2 pg/mL), B[a]P (5 ng/mL) seemed to have a potentiating effect on Vtg expression and secretion, although by their own these compounds had no observable estrogenic effect on Vtg induction. Tamoxifen (a selective estrogen receptor modulators, 1 nmol/L-1 mumol/L), and P-naphtho-flavone (beta-NF, an aryl hydrocarbon receptor inducing compounds, 2.5-1000 ng/mL) also were employed to study the possible interactions in DES-induced Vtg expression. In co-treatment of the DES-induced hepatocytes with beta-NF or tamoxifen, the decrease in Vtg production did parallel induction of CYP1A1 for beta-NF, but tamoxifen inhibited Vtg induction did not parallel induced CYP1A1 expression in all test concentrations. On the contrary, it was found that in co-treatment of the TCDD-induced hepatocytes with DES, TCDD induced CYP1A1 mRNA production was inhibited by DES also. These results implicated a possible cross talk between estrogen receptor- and aryl hydrocarbon receptor-mediated pathways in the hepatocytes.
Resumo:
Using a nuclear transplantation approach, the integration and expression of the green fluorescent protein (GFP) gene in the embryogenesis of transgenic leach (Misgurnus anguillicaudatus Cantor) have been studied. The GFP gene expression is first observed at the gastrula stage, which is consistent with the initiation of cell differentiation of fish embryos. The time course of the foreign gene expression is correlated with the regulatory sequences. The expression efficiency also depends on the gene configuration: the expression of pre-integrating circular plasmid at early embryos is higher than that of the linear plasmid. The integration of the GFP gene is first detected at the blastula stage and lasts for quite a long period. When two types of different plasmids are co-injected into fertilized eggs, the behavior of their integration and expression is not identical.
Resumo:
Background: The model eukaryote, Tetrahymena thermophila, is the first ciliated protozoan whose genome has been sequenced, enabling genome-wide analysis of gene expression. Methodology/Principal Findings: A genome-wide microarray platform containing the predicted coding sequences (putative genes) for T. thermophila is described, validated and used to study gene expression during the three major stages of the organism's life cycle: growth, starvation and conjugation. Conclusions/Significance: Of the,27,000 predicted open reading frames, transcripts homologous to only,5900 are not detectable in any of these life cycle stages, indicating that this single-celled organism does indeed contain a large number of functional genes. Transcripts from over 5000 predicted genes are expressed at levels >5x corrected background and 95 genes are expressed at >250x corrected background in all stages. Transcripts homologous to 91 predicted genes are specifically expressed and 155 more are highly up-regulated in growing cells, while 90 are specifically expressed and 616 are up-regulated during starvation. Strikingly, transcripts homologous to 1068 predicted genes are specifically expressed and 1753 are significantly up-regulated during conjugation. The patterns of gene expression during conjugation correlate well with the developmental stages of meiosis, nuclear differentiation and DNA elimination. The relationship between gene expression and chromosome fragmentation is analyzed. Genes encoding proteins known to interact or to function in complexes show similar expression patterns, indicating that co-ordinate expression with putative genes of known function can identify genes with related functions. New candidate genes associated with the RNAi-like process of DNA elimination and with meiosis are identified and the late stages of conjugation are shown to be characterized by specific expression of an unexpectedly large and diverse number of genes not involved in nuclear functions.
Resumo:
SiO2-CaO-P2O5 gel bioglass (BG) nanoparticles with the diameter of 40 nm were synthesized by sol-gel approach. The surface of BG nanoparticles was grafted through the ring-open polymerization of the L-lactide to yield poly (L-lactide) (PLLA) grafted gel particle (PLLA-g-BG). The PLLA-g-BG was further blended with poly(lactide-co-glycolide) (PLGA) to prepare the nanocomposites of PLLA-g-BG/PLGA with the various blend ratios of two phases. PLLA-g-BG accounted 10%, 20% and 40% in the composite, respectively. TGA, ESEM and EDX were used to analyze the graft ratio of PLLA-g-BG, the dispersion of nano-particles and the surface elements of the composites respectively. The rabbit osteoblasts were seeded and cultured on the thin films of composites in vitro. The cell adhesion, spreading and growth of osteoblasts were analyzed with FITC staining, NIH Image J software and MTT assay. The change of cell cycle was monitored by flow cytometry (FCM). The results demonstrated that the Surface modification of BG with PLLA could significantly improve the dispersing of the particles in the matrix of PLGA. The nanocomposite with 20% PLLA-g-BG exhibited superior surface properties, including roughness and plenty of silicon, calcium and phosper, to enhance the adhesion, spreading and proliferation of osteoblasts.