22 resultados para Quartz and aluminosilicate mineral
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The laser-induced damage threshold (LIDT) and damage morphology of antireflection (AR) coatings on quartz and sapphire are investigated. A very interesting phenomena is found in the measurement. In the case of a single pulse laser, the LIDT of the AIR coatings on quartz is higher than that of sapphire. On the contrary, for a free-pulse laser, the LIDT of AIR coatings on sapphire is higher than that of quartz. (C) 2004 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The characteristics and distribution patterns of detrital minerals (0.063 similar to 0.125 mm) in marine sediments provide a significant indicator for the identification of the origin of sediment. The detrital mineral composition of 219 surface sediment samples was analysed to identify the distribution of sediments within the western Philippine Sea. The area can be divided into three mineral provinces: ( 1) province east of the Philippine Trench, the detrital minerals in this province are mainly composed of calcareous or siliceous organisms, with the addition of volcanogenic minerals from an adjacent island arc; (II) middle mineral province, clastic minerals including feldspar, quartz and colorless volcanic glass, sourced from seamounts with intermediate-acid volcanic rock, or erupting intermediate-acid volcano; (III) province west of the Palau-Kyushii Ridge, the matter provenance within this province is complex; the small quantity of feldspar and quartz may be sourced from seamounts or erupting volcano with intermediate - acid composition, with a component of volcanic scoria sourced from a volcano erupting on the Palau-Kyushu Ridge. it is suggested that, ( I) Biogenic debris of the study area is closely related to water depth, with the amount of biogenic debris controlled by carbonate lysocline. (2) Volcaniclastic matter derived from the adjacent island are can be entrained by oceanic currents and transported towards the abyssal basin over a short distance. The weathering products of volcanic rocks of the submarine plateau ( e. g. I Benham Plateau) and adjacent ridges provide an important source of detrital sedimentation, and the influence scope of them is constrained by the intensity of submarine weathering. (3) Terrigenous sediments from the continent of Asia and the adjacent Philippine island arc have little influence on the sedimentation of this study area, and the felsic mineral component is probably sourced from volcanic seamounts of intermediate-acid composition.
Resumo:
The distribution for percent content of light mineral is divided in detail to emphasize distributional trends of higher and lower contents by using 222 samples of light mineral in the southern Yellow Sea. 5 mineral provinces are divided, and they are I-north mineral province of the southern Yellow Sea, the sediment dominantly derived from the Yellow River; II-mixed mineral province, the sediment derived from both the Yellow River and Yangtze River; III-middle mineral province, the sediment derived mainly from the Yellow River and a part of sediment derived from Yangtze River; IV-province east of Yangtze River mouth, the sediment derived dominantly from Yangtze River; and V south mineral province, sediment was affected by relict sediment and modern sediment of Yangtze River. In this paper, the assemblage of dominant mineral and diagnostic mineral for the five provinces are discerned.
Resumo:
The subduction zone is an important site of the fluid activity and recycling of chemical elements. The fluid characteristic of deep subduction zones is a top scientific problem attracting the petrologists, geochemists and tectonists. In this dissertation, the characteristics of fluid activity within a deep subduction zone have been explored on the basis of the studies on the petrography, mineral chemistry, fluid inclusions, geochemistry and metamorphic P–T conditions of the omphacite-bearing high-pressure veins and related hosts from the low-temperature/high-pressure metamorphic belt in southwestern Tianshan, China. Multiple high-pressure veins are exposed in host eclogites and blueschists. The veins are composed predominantly of omphacite, garnet, quartz, and other minerals. Some veins contain cm-sized rutiles. In general, the vein can be divided into three types, the ‘in situ dehydration’ vein, the ‘external transport’ vein and the ‘composite’ vein. The omphacites within the veins and related host rocks contain lots of two-phase or three-phase primary fluid inclusions. The final melting temperature (Tfm) of fluid inclusions varies mainly from -0.6 to -4.3 °C, the homogeneous temperature (Th) varies from 185 to 251 °C, the salinity varies from 1.1 to 6.9 wt.% NaCl equivalent and the density varies from 0.81 to 0.9 g/cm3. The fluids were released under the conditions of T = 520–580°C and P = 15–19 kbar at blueschist facies to eclogite facies transition. The fluids include not only Li, Be, LILE, La, Pb-enriched and HFSE- and HREE-depleted aqueous fluids but also HFSE (Ti-Nb-Ta)-rich aqueous fluids. The complex composed of aluminosilicate polymers and F was the catalyst which had caused the Ti-Nb-Ta to be dissolved into the fluids. During the transport of the LILE-rich and HFSE- and HREE-poor fluids, they can exchange some chemical elements with country rocks and leach some trace elements in some extent. The rutile could be precipitated from the HFSE (Ti-Nb-Ta)-rich aqueous fluids when CO2 was added into the fluids. The host rocks could obtain some elements, such as Ca, Cs, Rb, Ba and Th, from the external fluids. The fluids with complex composition had been released within the deep subduction zone (>50 km) in Early Carboniferous during the subduction of the South Tianshan Ocean under the Yili–Central Tianshan Plate. The results obtained in this dissertation have made new progress compared with the published data (e.g. Tatsumi, 1989; Becker et al., 1999; Scambelluri and Philippot, 2001; Manning, 2004; Hermann et al., 2006; Spandler and Hermann, 2006).
Reaction and formation of crystalline silicon oxynitride in Si-O-N systems under solid high pressure
Resumo:
Oxidized amorphous Si3N4 and SiO2 powders were pressed alone or as a mixture under high pressure (1.0-5.0 GPa) at high temperatures (800-1700 degreesC). Formation of crystalline silicon oxynitride (Si(2ON)2) was observed from amorphous silicon nitride (Si3N4) powders containing 5.8 wt% oxygen at 1.0 GPa and 1400 degreesC, The Si2ON2 coexisted with beta -Si3N4 with a weight fraction of 40 wt%, suggesting that all oxygen in the powders participated in the reaction to form Si2ON2. Pressing a mixture of amorphous Si3N4 of lower oxygen (1.5 wt%) and SiO2 under 1.0-5.0 GPa between 1000 degrees and 1350 degreesC did not give Si2ON2 phase, but yielded a mixture of alpha,beta -Si3N4, quartz, and coesite (a high-pressure form of SiO2). The formation of Si2ON2, from oxidized amorphous Si3N4 seemed to be assisted by formation of a Si-O-N melt in the system that was enhanced under the high pressure.
Resumo:
Sandstone-type uranium deposits are frequently found close to oil fields or uraniferous sandstones contain bitumen or petroleum. However, few evidence has been presented to indicate the association of uranium mineralization with petroleum oxidation. Thus, Dongsheng uranium deposit in Ordos Basin and Qianjiadian deposit in Kailu Basin are taken for examples to solve the puzzle. Integration data from sedimentary petrology, mineralogy, race elements geochemistry, isotope geochemistry and organic geochemistry, the uranium and petroleum sources, and diagenetic paragenesis of the host sandstone are analyzed, and then the genetic relationship between microbes, petroleum and uranium deposits are discussed. The observation under microscope shows that the host sandstone samples from Middle Jurassic Zhiluo Formation in the Dongsheng deposit contained different kinds of metamorphic rock fragments, which should have been derived form outcrops north to this basin. The LREE/HREE ratios of gneiss and amphibolite sampled from outcrops were close to the highest and the lowest LREE/HREE ratios of the sandstones with well-compared chondrite-normalized REE patterns, respectively. So these results consistently indicated that parent rocks of sandstones were mainly contributed from these two kinds of metamorphic rocks. There was very high Th/U ratio for granite gneiss, which was a mainly potential U resource. Hydrocarbon inclusions and adsorbed hydrocarbons are observed under fluorescence microscope in the host sandstone of Dongsheng uranium deposit, suggesting that the sandstones may have been utilized as oil migration pathways. Based on biomarker parameters, it is indicated that the inclusion oils and adsorbed hydrocarbons were marginally mature to mature, and were derived from humic-sapropel type organic matter under poor reducing freshwater to semi-saline environment. The features are similar to those of organic matter extracted from Triassic sandstone and source rock, but are different from that of cretaceous sandstone. Thus, it can be concluded that the inclusion oils and adsorbed hydrocarbons were mainly derived from Triassic lacustrine facies source rock. Observation results under Scanning Electron Microscopy and Electron Microprobe with Energy Spectrum Analysis show that, in Dongsheng area, the main uranium ore mineral is coffinite. The coffinite is intimately intergrown or coexists with pyrite and calcite, thus, the solution during mineralization stage is inferred to be alkaline. The alkaline environment is not favored for uranium to be pre-concentrated by absorption, and then be reduced abiogenetically. δ34S of pyrite and δ13C of calcite indicate that pyrite was formed by bacterial sulfate reduction (BSR) and part of the carbon of calcite has been dirived from oxidation of petroleum, respectively. Additionally, petroleum is found biodegraded. All the lines of evidence consistently indicate that petroleum was involved in uranium mineralization. Coffinite with microbe-like structures is found in the high U sandstone samples and is composed of nanoparticles, indicating the coffinite is biogenic. The conclusion are also supportted by laboratory experiment studies, which have shown that SRB are capable of utilizing U(VI) as the preferred electron acceptor for respiration and reduce U(VI) to U(IV) directly, coupled the oxidaton of organic matter and sulfate reduction. Based on the research results mentioned above, in the Dongsheng area, coffinite is likely to have formed by mixing of brine containing petroleum derived from Triassic with uranium-bearing meteoric water from outcrops north to Ordos Basin. SRB utilize hydrocarbon as carbon source, and directly reduce U(VI) resulting in precipitation of coffinite. The product of metabolism, H2S and CO2, was precipitated as pyrite and calcite during mineralization stage. Petroleum in fluid inclusions and adsorbed type in host sandstone from Lower Cretaceous Yaojia Formation in Qianjiadian uranium deposit, Kailu Basin, are derived from Jurassic Jiufotang Formation in this basin and the uranium mineral consists mainly of pitchblende. The δ34S and δ13C values of pyrite and calcite during mineralization stage indicate SRB have likely degraded petroleum, which is similar to that of Dongsheng deposit. The alkaline environment as indicated by the diagenetic mineral assemblage calcite, Fe dolomite, pyrite and pitchblende deposit suggests that U ore in the Qiangjiajiadian has a similar origin, i.e., direct reduction by SRB. However, less part of pitchblende is intergrown with kaolinite, suggesting the solution during mineralization stage is acidic. The environment is favorable for U(VI) to be adsorded on quartz or other mineral, and then reduced by H2S produced by SRB. Thus, it can be concluded that U(VI) reduction with petroleum oxidation by SRB and other microbes is an important ore-forming mechanism in petroleum-related sandstone-type uranium deposits. The finding is significant in that it provides a theoretical basis for exploration of both uranium and petroleumr.
Resumo:
In Tarim Basin, extensive carbonates of Lower Paleozoic occur, in which thick Cambrian and Lower Ordovician dolostones are widespread and show a potential perspective in hydrocarbon exploration. So they are viewed as an important target for exploration. Tarim Basin is a poly phase composite basin, which underwent multiphase tectonic modification and volcanic activities; these exerted significant influences on the basin-fills and basin fluid evolution, thereby the diagenetic history, particularly on the deep-buried Lower Paleozoic dolostones. Referring to the classification of dolomite texture proposed by Gregg & Sibley (1984) and Sibley & Gregg (1987). In view of crystal size, crystal shape, crystal surface and contact relation, eight genetic textures of dolomite crystals are identified, based on careful petrographic examinatoins. These textures include: 1) micritic dolomite; 2) relict mimetic dolomite; 3)finely crystalline, planar-e(s), floating dolomite; 4)finely crystalline, planar-e(s) dolomite; 5) finely-coarse crystalline, nonplanar-a dolomite; 6)coarse crystalline, nonplanar saddle dolomite; 7) finely-medium crystalline, planar-e(s) dolomite cement; 8) coarse crystalline, nonplanar saddle dolomite cement, in which the former six textures occurs as in matrix, the latter two in the cements. Detailed geochemistry analysis is carried out on the basis of genetic textures of dolomite and related minerals such as quartz and calcite. The result showed that the calcite has the highest average content in Sr, which can be sorted into two groups; micritic dolomite has the highest average content in Sr among all kinds of dolomites; the REE patterns of all kinds of dolomites is similar to those of marine limestone samples. Saddle dolomite cement has δ13C values from -2.44‰ to 1.27‰ PDB, and δ18O values from -13.01‰ to -5.12‰ PDB, which partially overlap with those of matrix dolomite (δ13C values from -2.83‰ to 2.01‰ PDB, δ18O values from -10.63‰ to -0.85‰ PDB). Saddle dolomite cement has 87Sr/86Sr ratios from 0.7086 to 0.7104, which totally overlap with those of matrix dolomite (0.7084 ~ 0.7116). Compared with saddle dolomite derived from other basins all over the world, the saddle dolomites of Tarim Basin have similar δ13C, δ18O and 87Sr/86Sr ratios values with those of matrix dolomite. This scenario reflects the unusual geological setting and special dolomitizing liquid of Tarim Basin. The values of δ18O, δ13C and 87Sr/86Sr ratios of calcite also can be sorted out two groups, which may been resulted from the one stage of extensive uplift of Tarim Basin from Mesozoic to Cenozoic. Fluid inclusion microthermometry data of the diagenetic mineral indicates that matrix dolomite has relatively low homogenization temperatures (Th) of 80~105oC and salinities of 12.3% (wt% NaCl equivalent); saddle dolomite has highest Th values, which concentrate in 120~160oC and salinities of 13.5~23.7% (wt% NaCl equivalent); quartz has relatively low Th of 135~155oC and salinities of 17.8~22.5% (wt% NaCl equivalent); calcite has relatively low Th of 121~159.5oC and salinities of 1.4~17.5% (wt% NaCl equivalent). These data suggest that the saddle dolomites could have formed in thermal brine fluids. Based on comprehensive petrographical study, detailed geochemistry and fluid inclusion microthermometry analysis on Lower Paleozoic dolomite of Tarim Basin, three types of dolomitisation mechanism are proposed: Penecontemporaneous dolomitisation (Sabkha dolomitisation & Reflux dolomitisation); Burial dolomitisation (shallow-intermediate burial dolomitisation & Deep burial dolomitisation ); Hydrothermal cannibalized dolomitisation. In view of host-specified occurrences of hydrothermal dolomite, the low abundance of saddle dolomite and high geochemical similarities between saddle dolomite and host dolomite, as well as highest Th and high salinities , the hydrothermal dolomite in Tarim Basin is thus unique, which could have been precipitated in modified fluid in the host dolomite through intraformational thermal fluid cannibalization of Mg ions from the host. This scenario is different from the cases that large scale dolomitizing fluid migration took place along the fluid pathways where abundant saddle dolomite precipitated. Detailed observations on 180 petrographic and 60 casting thin sections show original pores in Lower Paleozoic dolomite were almost died out by complicated diagenetic process after a long time geologic evolution. On the other hand, deep-buried dolomite reservoirs is formed by tectonic and hydrothermal reforming on initial dolomites. Therefore, the distribution of structure-controlled hydrothermal dolomite reservoirs is predicted in Tabei and Tazhong Area of Tarim Basin based on the geophysical data.
Resumo:
During the course of evolution, the human skeletal system has evolved rapidly leading to an incredible array of phenotypic diversity, including variations in height and bone mineral density. However, the genetic basis of this phenotypic diversity and the relatively rapid tempo of evolution have remained largely undocumented. Here, we discover that skeletal genes exhibit a significantly greater level of population differentiation among humans compared with other genes in the genome. The pattern is exceptionally evident at amino acid-altering sites within these genes. Divergence is greater between Africans and both Europeans and East Asians. In contrast, relatively weak differentiation is observed between Europeans and East Asians. SNPs with higher levels of differentiation have correspondingly higher derived allele frequencies in Europeans and East Asians. Thus, it appears that positive selection has operated on skeletal genes in the non-African populations and this may have been initiated with the human colonization of Eurasia. In conclusion, we provide genetic evidence supporting the rapid evolution of the human skeletal system and the associated diversity of phenotypes.
Resumo:
Bi4Ti3O12 (BTO) and Bi3.25In0.75Ti3O12 (BTO:In) thin films were prepared on fused quartz and LaNiO3/Si (LNO) substrates by chemical solution deposition (CSD). Their microstructures, ferroelectric and optical properties were investigated by X-ray diffraction, scanning electron microscope, ferroelectric tester and UV-visible-NIR spectrophotometer, respectively. The optical band-gaps of the films were found to be 3.64 and 3.45 eV for the BTO and BTO:In films, respectively. Optical constants (refractive indexes and extinction coefficients) were determined from the optical transmittance spectra using the envelope method. Following the single electronic oscillator model, the single oscillator energy E-0, the dispersion energy E-d, the average interband oscillator wavelength lambda(0), the average oscillator strength S-0, the refractive index dispersion parameter (E-0/S-0), the chemical bonding quantity beta, and the long wavelength refractive index n(infinity) were obtained and analyzed. Both the refractive index and extinction coefficient of the BTO:In films are smaller than those of the BTO films. Furthermore, the refractive index dispersion parameter (E-0/S-0) increases and the chemical bonding quantity beta decreases in the BTO and BTO:In films compared with those of bulk. (C) 2007 Published by Elsevier B.V.
Resumo:
The adsorption behavior of exogenous thorium on soil was studied to evaluate the contaminated risk on soil. The adsorption capacity, equilibrium time, distribution coefficient and desorption ability were investigated by the experiments of static adsorption. The strong adsorption ability of exogenous thorium on soil samples was observed by high adsorption ratio (> 92%) and low desorption ratio (< 5%) in equilibrium, and the biggest distribution coefficient was over 10(4). The adsorption capacity and equilibrium time were related to soil properties. According to the results of adsorption, Freundlich equation (r >= 0.916 7) and Elovich equation (R-2 >= 0. 898 0) were primely fit for describing the thermodynamics and kinetics of the adsorption of exogenous thorium on soil samples, respectively, which indicated that the adsorption was belonged to the nonlinear adsorption, and was affected by the diffusion of thorium on soil surface and in mineral interbed. Sequential extraction procedure was employed to evaluate the bound fractions of exogenous thorium adsorbed on soil samples.
Resumo:
Through layer-by-layer (LBL) assembly technique, iron oxide (Fe3O4) nanoparticles coated by poly (diallyldimethylammonium chloride) (PDDA) and Preyssler-type polyoxometalates (NH4)(14)NaP5W30O110.31H(2)O (P5W30) were alternately deposited on quartz and ITO substrates, and 4-aminobenzoic acid modified glassy carbon electrodes. Thus-prepared multilayer films were characterized by UV-visible spectroscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry. It was proved that the multilayer films are uniform and stable. And the electrocatalytic activities of the multilayer films can be fine-tuned by adjusting the assembly conditions in the LBL assembly process, such as the pH of the assembly solution. The multilayer films fabricated from P5W30 solutions dissolved in 0.1 M H2SO4 exhibit high electrocatalytic response and sensitivity toward the reduction of two substrates of important analytical interests, HNO2 and IO3- whereas the films assembled with P5W30 solutions dissolved in 1.0 M H2SO4 show remarkable electrocatalytic activity for the hydrogen evolution reaction (HER). Furthermore, the electrocatalytic properties of the HER of the latter film can be obtained from the former film upon exposure to 1.0 M H2SO4 for several hours.
Resumo:
Abstract: Hejiaji area lies on eastern part of Shanbei Slope in Ordos Basin and the primary oil-bearing bed is Chang 4+5 and Chang 6 of Yanchang Formation. It is indicated that the sedimentary facies and reservoir characteristics restricted the hydrocarbon accumulation regularity by the geological information. Therefore, Applied with outcrop observation,core description, geophysical logging interpretation, thin section determination, Scanning Electron Microscope, reservoir lithology and physical property analysis and other analytic machinery, the sedimentary facies ,micro-characteristic and master control factors on hydrocarbon reservoir of Yanchang Formation in Hejiaji area are studied deeply by means of sedimentology,reservoir geology and petroleum geology and provide a reliably reference for later prospect . Delta facies are identified in Hejiaji area and of which distributary channels in delta plain microfacies controlled the distribution of sand bodies and accumulation of oil and gas.The distribution of sand bodies distributed from northeast to southwest are dominated by sedimentary facies . It was shown that the sandstones are medium to granule arkose,which the mud matrix is r and including,calcite,the content of matrix is lower and that mostly are cements which are mainly quartz and feldspar overgrowths and chlorite films, in the second place are hydromica and ferrocalcite. All the sandstones have entered a period of late diagenetic stage in which the dominant diagenesis types in the area are compaction, cementation and dissolution. Remnant intergranular porosity and feldspar dissolved pore are main pore types which are megalospore and medium pore. Medium-fine throat, fine throat and micro-fine throat are the mainly throat type. Pore texture can be classified as megalospore and fine throat type, medium-pore and micro-fine throat type mainly, and they are main accumulate interspace in research region. The reservoir of Yanchang Formation in Hejiaji area is low- pore and low- permeability in the mass which have strong heterogeneity in bed, interbedded and plane. Studying the parameter of pore and permeability comprehensively and consulting prevenient study results of evaluation of reservoir, the reservoir is classifiedⅡ,Ⅲ and Ⅳ three types in which the Ⅱand Ⅲ can be divided into Ⅱa and Ⅱb, Ⅲa and Ⅲb respectively. Ⅱb and Ⅲa are the main reservoir type in Hejiaji area which are about 72.73%and 80%percent of whole reservoir and effective reservoir respectively.
Resumo:
On the issue of geological hazard evaluation(GHE), taking remote sensing and GIS systems as experimental environment, assisting with some programming development, this thesis combines multi-knowledges of geo-hazard mechanism, statistic learning, remote sensing (RS), high-spectral recognition, spatial analysis, digital photogrammetry as well as mineralogy, and selects geo-hazard samples from Hong Kong and Three Parallel River region as experimental data, to study two kinds of core questions of GHE, geo-hazard information acquiring and evaluation model. In the aspect of landslide information acquiring by RS, three detailed topics are presented, image enhance for visual interpretation, automatic recognition of landslide as well as quantitative mineral mapping. As to the evaluation model, the latest and powerful data mining method, support vector machine (SVM), is introduced to GHE field, and a serious of comparing experiments are carried out to verify its feasibility and efficiency. Furthermore, this paper proposes a method to forecast the distribution of landslides if rainfall in future is known baseing on historical rainfall and corresponding landslide susceptibility map. The details are as following: (a) Remote sensing image enhancing methods for geo-hazard visual interpretation. The effect of visual interpretation is determined by RS data and image enhancing method, for which the most effective and regular technique is image merge between high-spatial image and multi-spectral image, but there are few researches concerning the merging methods of geo-hazard recognition. By the comparing experimental of six mainstream merging methods and combination of different remote sensing data source, this thesis presents merits of each method ,and qualitatively analyzes the effect of spatial resolution, spectral resolution and time phase on merging image. (b) Automatic recognition of shallow landslide by RS image. The inventory of landslide is the base of landslide forecast and landslide study. If persistent collecting of landslide events, updating the geo-hazard inventory in time, and promoting prediction model incessantly, the accuracy of forecast would be boosted step by step. RS technique is a feasible method to obtain landslide information, which is determined by the feature of geo-hazard distribution. An automatic hierarchical approach is proposed to identify shallow landslides in vegetable region by the combination of multi-spectral RS imagery and DEM derivatives, and the experiment is also drilled to inspect its efficiency. (c) Hazard-causing factors obtaining. Accurate environmental factors are the key to analyze and predict the risk of regional geological hazard. As to predict huge debris flow, the main challenge is still to determine the startup material and its volume in debris flow source region. Exerting the merits of various RS technique, this thesis presents the methods to obtain two important hazard-causing factors, DEM and alteration mineral, and through spatial analysis, finds the relationship between hydrothermal clay alteration minerals and geo-hazards in the arid-hot valleys of Three Parallel Rivers region. (d) Applying support vector machine (SVM) to landslide susceptibility mapping. Introduce the latest and powerful statistical learning theory, SVM, to RGHE. SVM that proved an efficient statistic learning method can deal with two-class and one-class samples, with feature avoiding produce ‘pseudo’ samples. 55 years historical samples in a natural terrain of Hong Kong are used to assess this method, whose susceptibility maps obtained by one-class SVM and two-class SVM are compared to that obtained by logistic regression method. It can conclude that two-class SVM possesses better prediction efficiency than logistic regression and one-class SVM. However, one-class SVM, only requires failed cases, has an advantage over the other two methods as only "failed" case information is usually available in landslide susceptibility mapping. (e) Predicting the distribution of rainfall-induced landslides by time-series analysis. Rainfall is the most dominating factor to bring in landslides. More than 90% losing and casualty by landslides is introduced by rainfall, so predicting landslide sites under certain rainfall is an important geological evaluating issue. With full considering the contribution of stable factors (landslide susceptibility map) and dynamic factors (rainfall), the time-series linear regression analysis between rainfall and landslide risk mapis presented, and experiments based on true samples prove that this method is perfect in natural region of Hong Kong. The following 4 practicable or original findings are obtained: 1) The RS ways to enhance geo-hazards image, automatic recognize shallow landslides, obtain DEM and mineral are studied, and the detailed operating steps are given through examples. The conclusion is practical strongly. 2) The explorative researching about relationship between geo-hazards and alteration mineral in arid-hot valley of Jinshajiang river is presented. Based on standard USGS mineral spectrum, the distribution of hydrothermal alteration mineral is mapped by SAM method. Through statistic analysis between debris flows and hazard-causing factors, the strong correlation between debris flows and clay minerals is found and validated. 3) Applying SVM theory (especially one-class SVM theory) to the landslide susceptibility mapping and system evaluation for its performance is also carried out, which proves that advantages of SVM in this field. 4) Establishing time-serial prediction method for rainfall induced landslide distribution. In a natural study area, the distribution of landslides induced by a storm is predicted successfully under a real maximum 24h rainfall based on the regression between 4 historical storms and corresponding landslides.
Resumo:
Ju Nan of Shandong province is located at southwest of Sulu UHP (ultrahigh-pressure) metamorphic terrane. It is composed of gneiss, paragneiss, eclogites, ultramafic rocks, marble and quartzite. A large ductile shear zone extends east-west has been found at the Zhubian, The south of Junan county. The Zhubian ductile shear zone is composed of high srain rock and mylonites. The mylonites fall into 3 types: Initial gneiss mylonite, mylonite and altramylonit.obvious lineation of penetration,foliation,S-Cfabrics,porphyroclasts,folds,irregularundulatory,extinction,subgrain boundary, dynamic recrystallization microstructure, core-mantle structure and are common in the ductile shear zone. Based on field work and microstructural analyse, a conclution is arrived: The ductile shear zone is an approximately SE trending faults. The Zhubian ductile shear zone formed at Ep ―Hb facies conditions which could be proved by deformaed and metamorphosed mineral aggregates, Deformation behavior, Ternary-feldspar geothermometry and so on. Zircon MC―ICP―MS U-Pb analysis is performed on the mylonite and have an average age ―835.9±13.9Ma, it’s the primary rocks formed age. The Zhubian ductile shear zone maybe formed at 224-242Ma.