306 resultados para Pt(111) electrodes

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemiluminescence (ECL) in the S2O82- system occurs under conventional cyclic voltammetry, when the Pt working electrode was coated with Cd elementary substance. The ECL mechanism was proposed, due to the reaction between the strongly oxidizing intermediate SO4 center dot- and the transitory production, CdO, generated by oxidation of Cd with SO4 center dot-. Moreover the ECL behavior was studied in different pHs and concentrations of S2O82- solution. It was showed that the ECL signal was strongest at pH 8.0, and its intensity increased with S2O82-. The experimental results verified well with the proposed ECL mechanism.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Au/Pt core shell nanoparticles (NPs) have been prepared via a layer-by-layer growth of Pt layers on An NPs using underpotential deposition (UPD) redox replacement technique. A single UPD Cu monolayer replacement with Pt(11) yielded a uniform Pt film on Au NPs, and the shell thickness can be tuned by controlling the number of UPD redox replacement cycles. Oxygen reduction reaction (ORR) in air-saturated 0.1 M H2SO4 was used to investigate the electrocatalytic behavior of the as-prepared core shell NPs. Cyclic voltammograms of ORR show that the peak potentials shift positively from 0.32 V to 0.48 V with the number of Pt layers increasing from one to five, suggesting the electrocatalytic activity increases with increasing the thickness of Pt shell. The increase in electrocatalytic activity may originate mostly from the large decrease of electronic influence of Au cores on surface Pt atoms. Rotating ring-disk electrode voltammetry and rotating disk electrode voltammetry demonstrate that ORR is mainly a four-electron reduction on the as-prepared modified electrode with 5 Pt layers and first charge transfer is the rate-determining step.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Oxygen spillover and back spillover on Pt/TiO2 catalysts have been studied by a potential dynamic sweep method. The characteristics of I-V profiles of Pt/TiO2 electrodes in the three potential sweep regions are different from those of Pt and TiO2 electrodes. The catalytic role of Pt/TiO2 in oxygen spillover and back spillover is identified. It decreases, and the electrochemical oxygen adsorption (or desorption) increases with elevating temperature of hydrogen post-treatment of Pt/TiO2; to a certain extent (hydrogen post-treatment of Pt/TiO2 at 700 degrees C), the control step of oxygen electrode process (anodic oxidation or cathodic reduction) changes from oxygen diffusion to electrochemical oxygen adsorption or desorption, respectively. Increasing the amount of Pt supported on TiO2 enhances the processes of oxygen spillover and back spillover. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Carbon supported PtSn alloy and PtSnOx particles with nominal Pt:Sn ratios of 3:1 were prepared by a modified polyol method. High resolution transmission electron microscopy (HRTEM) and X-ray microchemical analysis were used to characterize the composition, size, distribution, and morphology of PtSn particles. The particles are predominantly single nanocrystals with diameters in the order of 2.0-3.0 nm. According to the XRD results, the lattice constant of Pt in the PtSn alloy is dilated due to Sn atoms penetrating into the Pt crystalline lattice. While for PtSnOx nanoparticles, the lattice constant of Pt only changed a little. HRTEM micrograph of PtSnOx clearly shows that the change of the spacing of Pt (111) plane is neglectable, meanwhile, SnO2 nanoparticles, characterized with the nominal 0.264 nm spacing of SnO2 (10 1) plane, were found in the vicinity of Pt particles. In contrast, the HRTEM micrograph of PtSn alloy shows that the spacing of Pt (111) plane extends to 0.234 nm from the original 0.226 nm. High resolution energy dispersive X-ray spectroscopy (HR-EDS) analyses show that all investigated particles in the two PtSn catalysts represent uniform Pt/Sn compositions very close to the nominal one. Cyclic voltammograms (CV) in sulfuric acid show that the hydrogen ad/desorption was inhibited on the surface of PtSn alloy compared to that on the surface of the PtSnOx catalyst. PtSnOx catalyst showed higher catalytic activity for ethanol electro-oxidation than PtSn alloy from the results of chronoamperometry (CA) analysis and the performance of direct ethanol fuel cells (DEFCs). It is deduced that the unchanged lattice parameter of Pt in the PtSnOx catalyst is favorable to ethanol adsorption and meanwhile, tin oxide in the vicinity of Pt nanoparticles could offer oxygen species conveniently to remove the CO-like species of ethanolic residues to free Pt active sites. (C) 2005 Elsevier Ltd. All rights reserved.