13 resultados para Pruning algorithms
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The new numerical algorithms in SUPER/CESE and their applications in explosion mechanics are studied. The researched algorithms and models include an improved CE/SE (space-time Conservation Element and Solution Element) method, a local hybrid particle level set method, three chemical reaction models and a two-fluid model. Problems of shock wave reflection over wedges, explosive welding, cellular structure of gaseous detonations and two-phase detonations in the gas-droplet system are simulated by using the above-mentioned algorithms and models. The numerical results reveal that the adopted algorithms have many advantages such as high numerical accuracy, wide application field and good compatibility. The numerical algorithms presented in this paper may be applied to the numerical research of explosion mechanics.
Resumo:
Plasma equilibrium geometry has a great influence on the confinement and magnetohydrodynamic stability in tokamaks. The poloidal field (PF) system of a tokamak should be optimized to support the prescribed plasma equilibrium geometry. In this paper, a genetic algorithm-based method is applied to solve the optimization of the positions and currents of tokamak PF coils. To achieve this goal, we first describe the free-boundary code EQT Based on the EQT code, a genetic algorithm-based method is introduced to the optimization. We apply this new method to the PF system design of the fusion-driven subcritical system and plasma equilibrium geometry optimization of the Experimental Advanced Superconducting Tokamak (EAST). The results indicate that the optimization of the plasma equilibrium geometry can be improved by using this method.
Resumo:
This paper describes a path-following phase unwrapping algorithm and a phase unwrapping algorithm based on discrete cosine transform (DCT) which accelerates the Computation and suppresses the propagation of noise. Through analysis of fringe pattern with serious noises simulated in mathematic model, we make a contrast between path-following algorithm and DCT algorithm. The advantages and disadvantages or analytical fringe pattern are also given through comparison of two algorithms. Three-dimensional experimental results have been given to prove the validity of these algorithms. Despite DCT phase unwrapping technique robustness and speed in some cases, it cannot be unwrapping inconsistencies phase. The path-following algorithm can be used in automation analysis of fringe patterns with little influence of noise. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Genetic Algorithms (GAs) were used to design triangular lattice photonic crystals with large absolute band-gap. Considering fabricating issues, the algorithms represented the unit cell with large pixels and took the largest absolute band-gap under the fifth band as the objective function. By integrating Fourier transform data storage mechanism, the algorithms ran efficiently and effectively and optimized a triangular lattice photonic crystal with scatters in the shape of 'dielectric-air rod'. It had a large absolute band gap with relative width (ratio of gap width to midgap) 23.8%.
Resumo:
Based on the conventional through-short-match (TSM) method, an improved TSM method has been proposed in this Letter. This method gives an analytical solution and has almost all the advantages of conventional TSM methods. For example, it has no phase uncertainty and no bandwidth limitation. The experimental results show that the accuracy can be significantly improved with this method. The proposed theory can be applied to the through-open-match (TOM) method. (C) 2002 Wiley Periodicals. Inc.
Resumo:
IEEE Comp Soc, IFIP, Tianjin Normal Univ
The statistic inversion algorithms of water constituents for the Huanghai Sea and the East China Sea
Resumo:
A group of statistical algorithms are proposed for the inversion of the three major components of Case-H waters in the coastal area of the Huanghai Sea and the East China Sea. The algorithms are based on the in situ data collected in the spring of 2003 with strict quality assurance according to NASA ocean bio-optic protocols. These algorithms are the first ones with quantitative confidence that can be applied for the area. The average relative error of the inversed and in situ measured components' concentrations are: Chl-a about 37%, total suspended matter (TSM) about 25%, respectively. This preliminary result is quite satisfactory for Case-H waters, although some aspects in the model need further study. The sensitivity of the input error of 5% to remote sensing reflectance (Rrs) is also analyzed and it shows the algorithms are quite stable. The algorithms show a large difference with Tassan's local SeaWiFS algorithms for different waters, except for the Chl-a algorithm.