58 resultados para Protein-Structure

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new metalloproteinase-disintegrin, named Jerdonitin, was purified from Trimeresurus jerdonii venom with a molecular weight of 36 kDa on SDS-PAGE. It dose-dependently inhibited ADP-induced human platelet aggregation with IC50 of 120 nM. cDNA cloning and sequencing revealed that Jerdonitin belonged to the class II of snake venom metalloproteinases (SVMPs) (P-II class). Different from other P-II class SVMPs, metalloproteinase and disintegrin domains of its natural protein were not separated, confirmed by internal peptide sequencing. Compared to other P-II class SVMPs, Jerdonitin has two additional cysteines (Cys219 and Cys238) located in the spacer domain and disintegrin domain, respectively. They probably form a disulfide bond and therefore the metalloproteinase and disintegrin domains cannot be separated by posttranslationally processing. In summary, comparison of the amino acid sequences of Jerdonitin with those of other P-II class SVMPs by sequence alignment and phylogenetic analysis, in conjunction with natural protein structure data, suggested that it was a new type of P-II class SVMPs. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

CLEMAPS is a tool for multiple alignment of protein structures. It distinguishes itself from other existing algorithms for multiple structure alignment by the use of conformational letters, which are discretized states of 3D segmental structural states. A letter corresponds to a cluster of combinations of three angles formed by C-alpha pseudobonds of four contiguous residues. A substitution matrix called CLESUM is available to measure the similarity between any two such letters. The input 3D structures are first converted to sequences of conformational letters. Each string of a fixed length is then taken as the center seed to search other sequences for neighbors of the seed, which are strings similar to the seed. A seed and its neighbors form a center-star, which corresponds to a fragment set of local structural similarity shared by many proteins. The detection of center-stars using CLESUM is extremely efficient. Local similarity is a necessary, but insufficient, condition for structural alignment. Once center-stars are found, the spatial consistency between any two stars are examined to find consistent star duads using atomic coordinates. Consistent duads are later joined to create a core for multiple alignment, which is further polished to produce the final alignment. The utility of CLEMAPS is tested on various protein structure ensembles.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The probability distribution of the four-phase invariants in the case of single isomorphous replacement has been developed to estimate some individual phases. An example of its application to obtain the phases having special values of 0, pi or +/-pi /2 is given for a known protein structure in space group P2(1)2(1)2(1). The phasing procedure includes the determination of starting phases and an iterative calculation. The initial values of starting phases, which are required by the formula, can be obtained from the estimate of one-phase seminvariants and by specifying the origin and enantiomorph. In addition, the calculations lead to two sets of possible phases for each type of reflection by assigning arbitrarily an initial phase value. The present method provides a possibility for the multisolution technique to increase greatly the number of known phases while keeping the number of the trials quite small.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

How to refine a near-native structure to make it closer to its native conformation is an unsolved problem in protein-structure and protein-protein complex-structure prediction. In this article, we first test several scoring functions for selecting locally resampled near-native protein-protein docking conformations and then propose a computationally efficient protocol for structure refinement via local resampling and energy minimization. The proposed method employs a statistical energy function based on a Distance-scaled Ideal-gas REference state (DFIRE) as an initial filter and an empirical energy function EMPIRE (EMpirical Protein-InteRaction Energy) for optimization and re-ranking. Significant improvement of final top-1 ranked structures over initial near-native structures is observed in the ZDOCK 2.3 decoy set for Benchmark 1.0 (74% whose global rmsd reduced by 0.5 angstrom or more and only 7% increased by 0.5 angstrom or more). Less significant improvement is observed for Benchmark 2.0 (38% versus 33%). Possible reasons are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Identification of protein interaction interfaces is very important for understanding the molecular mechanisms underlying biological phenomena. Here, we present a novel method for predicting protein interaction interfaces from sequences by using PAM matrix (PIFPAM). Sequence alignments for interacting proteins were constructed and parsed into segments using sliding windows. By calculating distance matrix for each segment, the correlation coefficients between segments were estimated. The interaction interfaces were predicted by extracting highly correlated segment pairs from the correlation map. The predictions achieved an accuracy 0.41-0.71 for eight intraprotein interaction examples, and 0.07-0.60 for four interprotein interaction examples. Compared with three previously published methods, PIFPAM predicted more contacting site pairs for 11 out of the 12 example proteins, and predicted at least 34% more contacting site pairs for eight proteins of them. The factors affecting the predictions were also analyzed. Since PIFPAM uses only the alignments of the two interacting proteins as input, it is especially useful when no three-dimensional protein structure data are available.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Features of homologous relationship of proteins can provide us a general picture of protein universe, assist protein design and analysis, and further our comprehension of the evolution of organisms. Here we carried Out a Study of the evolution Of protein molecules by investigating homologous relationships among residue segments. The motive was to identify detailed topological features of homologous relationships for short residue segments in the whole protein universe. Based on the data of a large number of non-redundant Proteins, the universe of non-membrane polypeptide was analyzed by considering both residue mutations and structural conservation. By connecting homologous segments with edges, we obtained a homologous relationship network of the whole universe of short residue segments, which we named the graph of polypeptide relationships (GPR). Since the network is extremely complicated for topological transitions, to obtain an in-depth understanding, only subgraphs composed of vital nodes of the GPR were analyzed. Such analysis of vital subgraphs of the GPR revealed a donut-shaped fingerprint. Utilization of this topological feature revealed the switch sites (where the beginning of exposure Of previously hidden "hot spots" of fibril-forming happens, in consequence a further opportunity for protein aggregation is Provided; 188-202) of the conformational conversion of the normal alpha-helix-rich prion protein PrPC to the beta-sheet-rich PrPSc that is thought to be responsible for a group of fatal neurodegenerative diseases, transmissible spongiform encephalopathies. Efforts in analyzing other proteins related to various conformational diseases are also introduced. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

mRNA 所包含的核苷酸序列通过三联体密码子决定了蛋白质的氨基酸序列。但是, 由于对氨基酸同 义密码使用频率上的差异, 密码子与反密码子相互作用效率上的不同, 以及密码子上下文关系和mRNA 不同区 域二级结构上的差异, 造成了核糖体对mRNA 不同区域翻译速度上的差异, 加之共翻译折叠的作用, 使得mR2 NA 的序列和结构影响着蛋白质空间结构的形成。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The entry of human immunodeficiency virus (HIV) into cells depends on a sequential interaction of the gp120 envelope glycoprotein with the cellular receptors CD4 and members of the chemokine receptor family. The CC chemokine receptor CCR5 is such a receptor for several chemokines and a major coreceptor for the entry of R5 HIV type-1 (HIV-1) into cells. Although many studies focus on the interaction of CCR5 with HIV-1, the corresponding interaction sites in CCR5 and gp120 have not been matched. Here we used an approach combining protein structure modeling, docking and molecular dynamics simulation to build a series of structural models of the CCR5 in complexes with gp120 and CD4. Interactions such as hydrogen bonds, salt bridges and van der Waals contacts between CCR5 and gp120 were investigated. Three snapshots of CCR5-gp120-CD4 models revealed that the initial interactions of CCR5 with gp120 are involved in the negatively charged N-terminus (Nt) region of CCR5 and positively charged bridging sheet region of gp120. Further interactions occurred between extracellular loop2 (ECL2) of CCR5 and the base of V3 loop regions of gp120. These interactions may induce the conformational changes in gp120 and lead to the final entry of HIV into the cell. These results not only strongly support the two-step gp120-CCR5 binding mechanism, but also rationalize extensive biological data about the role of CCR5 in HIV-1 gp120 binding and entry, and may guide efforts to design novel inhibitors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heat shock proteins (Hsps) are a family of highly conserved cellular proteins present in all organisms, mediating a range of essential housekeeping and cytoprotective functions as well-known molecular chaperons and recently as regulators of the immune response. By subtractive suppression hybridization, three Hsp40 homologues have been identified in the flounder (Paralichthys olivaceus) embryonic cells (FEC) after treatment with UV-inactivated turbot (Scophthalmus maximus L.) rhabdovirus (SMRV), termed PoHsp40A4, PoHsp40B6 and PoHsp40B11, whose encoded proteins all possess the conserved DnaJ domain, a signature motif of the Hsp40 family. Based on different protein structure and phylogenetic analysis, they can be categorized into two subfamilies, PoHsp40A4 for Type I Hsp40, PoHsp40B6 and PoHsp40B11 for Type 11 Hsp40. Further expression analysis revealed two very different types of kinetics in response either to heat shock or to virus infection, with a marked induction for PoHsp4OA4 and a weak one for both PoHsp40B6 and PoHsp40B11. A very distinct tissue distribution of mRNA was also revealed among the three genes, even between PoHsp40B6 and PoHsp40B11. This is the first report on the transcriptional induction of Hsp40 in virally stimulated fish cells, and the differential expressions might reflect their different roles in unstressed and stressed cells. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Model protein bovine serum albumin (BSA) was covalently grafted onto poly[(L-lactide)co-carbonate] microsphere surfaces by "click chemistry." The grafting was confirmed by confocal laser scanning microscopy and X-ray photoelectron spectroscopy. The maximum amount of surface-grafted BSA was 45 mg.g(-1). The secondary structure of the grafted BSA was analyzed by FTIR and the results demonstrated that the grafting did not affect protein structure. This strategy can also be used on microspheres prepared from poly(L-lactide)/poly[(L-lactide)-co-carbonate] blend materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Circular dichroism (CD), fourier transform infrared (FTIR), and fluorescence spectroscopy were used to explore the effect of dimethyl sulfoxide (DMSO) on the structure and function of hemoglobin (Hb). The native tertiary structure was disrupted completely when the concentration of DMSO reached 50% (v/v), which was determined by loss of the characteristic Soret CD spectrum. Loss of the native tertiary structure could be mainly caused by breaking the hydrogen bonds, between the heme propionate groups and nearby surface amino acid residues, and by disorganizing the hydrophobic interior of this protein. Upon exposure of Hb to 52% DMSO for ca. 12 h in a D2O medium no significant change in 1652 cm(-1) band of the FTIR spectrum was produced, which demonstrated that alpha-helical structure predominated. When the concentration of DMSO increased to 57%: (1) the band at 1652 cm(-1) disappeared with the appearance of two new bands located at 1661 and 1648 cm(-1); (2) another new band at 1623 cm(-1) was attributed to the formation of intermolecular beta-sheet or aggregation, which was the direct consequence of breaking of the polypeptide chain by the competition of S=O groups in DMSO with C=O groups in amide bonds. Further increasing the DMSO concentration to 80%, the intensity at 1623 cm(-1) increased, and the bands at 1684, 1661 and 1648 cm(-1) shifted to 1688, 1664 and 1644 cm(-1), respectively. These changes showed that the native secondary structure of Hb was last and led to further aggregation and increase of the content of 'free' amide C=O groups. In pure DMSO solvent, the major band at 1664 cm(-1) indicated that almost all of both the intermolecular beta-sheet and any residual secondary structure were completely disrupted. The red shift of the fluorescence emission maxima showed that the tryptophan residues were exposed to a greater hydrophilic environment as the DMSO content increased. GO-binding experiment suggested that the biological function of Hb was disrupted seriously even if the content of DMSO was 20%. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three cDNA sequences encoding four SNARE (N-ethylmaleimide-sensitive fusion protein attachment protein receptors) motifs were cloned from sea perch, and the deduced peptide sequences were analyzed for structural prediction by using 14 different web servers and softwares. The "ionic layer" structure, the three dimensional extension and conformational characters of the SNARE 7S core complex by using bioinformatics approaches were compared respectively with those from mammalian X-ray crystallographic investigations. The result suggested that the formation and stabilization of fish SNARE core complex might be driven by hydrophobic association, hydrogen bond among R group of core amino acids and electrostatic attraction at molecular level. This revealed that the SNARE proteins interaction of the fish may share the same molecular mechanism with that of mammal, indicating the universality and solidity of SNARE core complex theory. This work is also an attempt to get the protein 3D structural information which appears to be similar to that obtained through X-ray crystallography, only by using computerized approaches. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The structure-based sequence motif of the distant proteins in evolution, protein tyrosine phosphatases (PTP) I and II superfamilies, as an example, has been defined by the structural comparison, structure-based sequence alignment and analyses on substitut

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Based on the statistical analysis of 119 human and 92 E. coli proteins it was found that for both human and E. coli, the mRNA sequences consisting of tri-codon and tetra-codon with high translation speed preferably code for alpha helices more than for coils. For beta strand, the preference/ avoidance oscillates with the translation speed. Moreover, the non-homogeneous usages of tri-codon and tetra-codon with different translation speeds in a given secondary structure have also been found. These results cannot be simply explained by the effect of stochastic fluctuation.