24 resultados para Propagation effects
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Confinement of electromagnetic energy into a single well-controlled oscillation of light is very important for generation of intense supercontinuum radiation. We find that the pulse breakup of few-cycle ultrashort laser pulses via resonant propagation effects can achieve this aim. By extracting such pulses and then focusing them to drive the He atoms, about 200 eV intense supercontinuum radiation can be generated, which is capable of supporting similar to 20 attosecond isolated pulse generation.
Resumo:
We investigate high-order harmonic emission and isolated attosecond pulse (IAP) generation in atoms driven by a two-colour multi-cycle laser field consisting of an 800 nm pulse and an infrared laser pulse at an arbitrary wavelength. With moderate laser intensity, an IAP of similar to 220 as can be generated in helium atoms by using two-colour laser pulses of 35 fs/800 nm and 46 fs/1150 nm. The discussion based on the three-step semiclassical model, and time-frequency analysis shows a clear picture of the high-order harmonic generation in the waveform-controlled laser field which is of benefit to the generation of XUV IAP and attosecond electron pulses. When the propagation effect is included, the duration of the IAP can be shorter than 200 as, when the driving laser pulses are focused 1 mm before the gas medium with a length between 1.5 mm and 2 mm.
Optimization of high-order harmonic by genetic algorithm for the chirp and phase of few-cycle pulses
Resumo:
The brightness of a particular harmonic order is optimized for the chirp and initial phase of the laser pulse by genetic algorithm. The influences of the chirp and initial phase of the excitation pulse on the harmonic spectra are discussed in terms of the semi-classical model including the propagation effects. The results indicate that the harmonic intensity and cutoff have strong dependence on the chirp of the laser pulse, but slightly on its initial phase. The high-order harmonics can be enhanced by the optimal laser pulse and its cutoff can be tuned by optimization of the chirp and initial phase of the laser pulse.
Resumo:
通过求解麦克斯韦-布洛赫方程组,分别在存在传播效应和无传播效应两种情况下,研究了调制掺杂的半导体量子阱中子带间的拉比振荡。研究发现,与电子-电子之间的相互作用的非线性相比较,传播效应对拉比振荡的影响更大;在不考虑传播效应时,脉冲可以使量子阱中的电子实现一次完整的布居反转,但是当传播效应存在情况下,完全的粒子数反转已不能实现。另外,研究还发现通过改变载流子的密度可以改变传播效应所产生的影响。
Resumo:
At present, in order to image complex structures more accurately, the seismic migration methods has been developed from isotropic media to the anisotropic media. This dissertation develops a prestack time migration algorithm and application aspects for complex structures systematically. In transversely isotropic media with a vertical symmetry axis (VTI media), the dissertation starts from the theory that the prestack time migration is an approximation of the prestack depth migration, based on the one way wave equation and VTI time migration dispersion relation, by combining the stationary-phase theory gives a wave equation based VTI prestack time migration algorithm. Based on this algorithm, we can analytically obtain the travel time and amplitude expression in VTI media, as while conclude how the anisotropic parameter influence the time migration, and by analyzing the normal moveout of the far offset seismic data and lateral inhomogeneity of velocity, we can update the velocity model and estimate the anisotropic parameter model through the time migration. When anisotropic parameter is zero, this algorithm degenerates to the isotropic time migration algorithm naturally, so we can propose an isotopic processing procedure for imaging. This procedure may keep the main character of time migration such as high computational efficiency and velocity estimation through the migration, and, additionally, partially compensate the geometric divergence by adopting the deconvolution imaging condition of wave equation migration. Application of this algorithm to the complicated synthetic dataset and field data demonstrates the effectiveness of the approach. In the dissertation we also present an approach for estimating the velocity model and anisotropic parameter model. After analyzing the velocity and anisotropic parameter impaction on the time migration, and based on the normal moveout of the far offset seismic data and lateral inhomogeneity of velocity, through migration we can update the velocity model and estimate the anisotropic parameter model by combining the advantages of velocity analysis in isotropic media and anisotropic parameter estimation in VTI media. Testing on the synthetic and field data, demonstrates the method is effective and very steady. Massive synthetic dataset、2D sea dataset and 3D field datasets are used for VTI prestack time migration and compared to the stacked section after NMO and prestack isotropic time migration stacked section to demonstrate that VTI prestack time migration method in this paper can obtain better focusing and less positioning errors of complicated dip reflectors. When subsurface is more complex, primaries and multiples could not be separated in the Radon domain because they can no longer be described with simple functions (parabolic). We propose an attenuating multiple method in the image domain to resolve this problem. For a given velocity model,since time migration takes the complex structures wavefield propagation in to account, primaries and multiples have different offset-domain moveout discrepancies, then can be separated using techniques similar to the prior migration with Radon transform. Since every individual offset-domain common-reflection point gather incorporates complex 3D propagation effects, our method has the advantage of working with 3D data and complicated geology. Testing on synthetic and real data, we demonstrate the power of the method in discriminating between primaries and multiples after prestack time migration, and multiples can be attenuated in the image space considerably.
Resumo:
In exploration seismology, the geologic target of oil and gas reservoir in complex medium request the high accuracy image of the structure and lithology of the medium. So the study of the prestack image and the elastic inversion of seismic wave in the complex medium come to the leading edge. The seismic response measured at the surface carries two fundamental pieces of information: the propagation effects of the medium and the reflections from the different layer boundaries in the medium. The propagation represent the low-wavenumber component of the medium, it is so-called the trend or macro layering, whereas the reflections represent the high-wavenumber component of the medium, it is called the detailed or fine layering. The result of migration velocity analysis is the resolution of the low-wavenumber component of the medium, but the prestack elastic inversion provided the resolution of the high-wavvenumber component the medium. In the dissertation, the two aspects about the migration velocity estimation and the elastic inversion have been studied.Firstly, any migration velocity analysis methods must include two basic elements: the criterion that tell us how to know whether the model parameters are correct and the updating that tell us how to update the model parameters when they are incorrect, which are effected on the properties and efficiency of the velocity estimation method. In the dissertation, a migration velocity analysis method based on the CFP technology has been presented in which the strategy of the top-down layer stripping approach are adapted to avoid the difficult of the selecting reduce .The proposed method has a advantage that the travel time errors obtained from the DTS panel are defined directly in time which is the difference with the method based on common image gather in which the residual curvature measured in depth should be converted to travel time errors.In the proposed migration velocity analysis method, the four aspects have been improved as follow:? The new parameterization of velocity model is provided in which the boundaries of layers are interpolated with the cubic spline of the control location and the velocity with a layer may change along with lateral position but the value is calculated as a segmented linear function of the velocity of the lateral control points. The proposed parameterization is suitable to updating procedure.? The analytical formulas to represent the travel time errors and the model parameters updates in the t-p domain are derived under local lateral homogeneous. The velocity estimations are iteratively computed as parametric inversion. The zero differential time shift in the DTS panel for each layer show the convergence of the velocity estimation.? The method of building initial model using the priori information is provided to improve the efficiency of velocity analysis. In the proposed method, Picking interesting events in the stacked section to define the boundaries of the layers and the results of conventional velocity analysis are used to define the velocity value of the layers? An interactive integrate software environment with the migration velocity analysis and prestack migration is built.The proposed method is firstly used to the synthetic data. The results of velocity estimation show both properties and efficiency of the velocity estimation are very good.The proposed method is also used to the field data which is the marine data set. In this example, the prestack and poststack depth migration of the data are completed using the different velocity models built with different method. The comparison between them shows that the model from the proposed method is better and improves obviously the quality of migration.In terms of the theoretical method of expressing a multi-variable function by products of single-variable functions which is suggested by Song Jian (2001), the separable expression of one-way wave operator has been studied. A optimization approximation with separable expression of the one-way wave operator is presented which easily deal with the lateral change of velocity in space and wave number domain respectively and has good approach accuracy. A new prestack depth migration algorithm based on the optimization approximation separable expression is developed and used to testing the results of velocity estimation.Secondly, according to the theory of the seismic wave reflection and transmission, the change of the amplitude via the incident angle is related to the elasticity of medium in the subsurface two-side. In the conventional inversion with poststack datum, only the information of the reflection operator at the zero incident angles can be used. If the more robust resolutions are requested, the amplitudes of all incident angles should be used.A natural separable expression of the reflection/transmission operator is represented, which is the sum of the products of two group functions. One group function vary with phase space whereas other group function is related to elastic parameters of the medium and geological structure.By employing the natural separable expression of the reflection/transmission operator, the method of seismic wave modeling with the one-way wave equation is developed to model the primary reflected waves, it is adapt to a certain extent heterogeneous media and confirms the accuracy of AVA of the reflections when the incident angle is less than 45'. The computational efficiency of the scheme is greatly high.The natural separable expression of the reflection/transmission operator is also used to construct prestack elastic inversion algorithm. Being different from the AVO analysis and inversion in which the angle gathers formed during the prstack migration are used, the proposed algorithm construct a linear equations during the prestack migration by the separable expression of the reflection/transmission operator. The unknowns of the linear equations are related to the elasticity of the medium, so the resolutions of them provided the elastic information of the medium.The proposed method of inversion is the same as AVO inversion in , the difference between them is only the method processing the amplitude via the incident angle and computational domain.
Resumo:
The propagation behaviors, which include the carrier-envelope phase, the area evolution and the solitary pulse number of few-cycle pulses in a dense two-level medium, are investigated based on full-wave Maxwell-Bloch equations by taking Lorentz local field correction (LFC) into account. Several novel features are found: the difference of the carrier-envelope phase between the cases with and without LFC can go up to pi at some location; although the area of ultrashort solitary pulses is lager than 2 pi, the area of the effective Rabi frequency, which equals to that the Rabi frequency pluses the product of the strength of the near dipole-dipole (NDD) interaction and the polarization, is consistent with the standard area theorem and keeps 2 pi; the large area pulse penetrating into the medium produces several solitary pulses as usual, but the number of solitary pulses changes at certain condition. (C) 2005 Optical Society of America.
Resumo:
By solving numerically the full Maxwell-Bloch equations without the slowly varying envelope approximation and the rotating-wave approximation, we investigate the effects of Lorentz local field correction (LFC) on the propagation properties of few-cycle laser pulse in a dense A-type three-level atomic medium. We find that: when the area of the input pulse is larger, split of pulse occurs and the number of the sub-pulses with LFC is larger than that without LFC; at the same distance, the time interval between the first sub-pulse and the second sub-pulse in the case without LFC is longer than that with LFC, the time of pulse appearing in the case without LFC is later than that in the case with LFC, and the two phenomena are more obvious with propagation distance increasing; time evolution rules of the populations of levels vertical bar 1 >, vertical bar 2 > and vertical bar 3 > in the two cases with and without LFC are much different. When the area of the input pulse is smaller, effects of LFC on time evolutions of the pulse and populations are remarkably smaller than those in the case of larger area pulse. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The effects of the relative phase between two laser beams on the propagation of a weak electromagnetic pulse are investigated in a V-type system with spontaneously generated coherence (SGC). Due to the relative phase, the subluminal and superluminal group velocity can be unified. Meanwhile, SGC can be regarded as a knob to manipulate light propagation between subluminal and superluminal.
Resumo:
An analytical formula for the cross-spectral density matrix of the electric field of anisotropic electromagnetic Gaussian-Schell model beams propagating in free space is derived by using a tensor method. The effects of coherence on those beams are studied. It is shown that two anisotropic stochastic electromagnetic beams that propagate from the source plane z = 0 into the half-space z > 0 may have different beam shapes (i.e., spectral density) and states of polarization in the half-space, even though they have the same beam shape and states of polarization in the source plane. This fact is due to a difference in the coherence properties of the field in the source plane. (C) 2007 Optical Society of America.
Resumo:
The photosynthetic oxygen evolution of Caulerpa serrulata was determined with oxygen electrodes. The effects of light and temperature on the growth and regeneration of fragmented C. serrulata thalli were analyzed. The regenerating rate and establishment of different sizes and portions of C. serrulata were studied. The results showed that the light saturation point of C. serrulata was 200 mu mol photons/m(2) per s and the optimum growth temperature was 25-30 degrees C. Under these conditions, the maximum photosynthetic oxygen evolution rate was 15.1 +/- 0.29 mg O-2/mg Chl a/h, the growth rate and elongation rate reached the highest values, 4.67 +/- 0.09 mg FW/d and 0.78 +/- 0.01 mm/d, respectively. The fragmented C. serrulata thalli was regenerated at 20-35 degrees C and survived at 15 degrees C and 200 mu mol photons/m(2) per s. A different survival rate was detected according to fragment size. All of these results indicated that C. serrulata was a candidate to become an invasive species if introduced into a new place. Therefore, we should pay more attention to C. serrulata for its potential threat to marine ecosystem when it is sold for aquarium use.
Resumo:
Numerous microcracks propagation in one metal matrix composite, Al/SiCp under impact loading was investigated. The test data was got with a specially designed impact experimental approach. The analysis to the density, nucleating locations and distributions of the microcracks as well as microstructure effects of the original composite was received particular emphasis. The types of microcracks or debonding nucleated in the tested composite were dependent on the stress level and its duration. Distributions of the microcracks were depended on that of microstructures of the tested composite while total number of microcracks in unit area and unit duration, was controlled by the stress levels. Also, why the velocity was much lower than theoretical estimations for elastic solids and why the microcracks propagating velocities increased with the stress levels' increasing in current experiments were analysed and explained.
Wave propagation and the frequency domain Green's functions in viscoelastic Biot/squirt (BISQ) media
Resumo:
In this paper, we examine the characteristics of elastic wave propagation in viscoelastic porous media, which contain simultaneously both the Biot-flow and the squirt-flow mechanisms (BISQ). The frequency-domain Green's functions for viscoelastic BISQ media are then derived based on the classic potential function methods. Our numerical results show that S-waves are only affected by viscoelasticity, but not by squirt-flows. However, the phase velocity and attenuation of fast P-waves are seriously influenced by both viscoelasticity and squirt-flows; and there exist two peaks in the attenuation-frequency variations of fast P-waves. In the low-frequency range, the squirt-flow characteristic length, not viscoelasticity, affects the phase velocity of slow P-waves, whereas it is opposite in the high-frequency range. As to the contribution of potential functions of two types of compressional waves to the Green's function, the squirt-flow length has a small effect, and the effects of viscoelastic parameter are mainly in the higher frequency range. Crown Copyright (C) 2006 Published by Elsevier Ltd. All rights reserved.