2 resultados para Production chain

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arsenic pollution and eutrophication are both prominent issues in the aquaculture ponds of Taiwan. It is important to study the effects of arsenic on algal growth and toxin production in order to assess the ecological risk of arsenic pollution, or at least to understand naturally occurring ponds. The sensitivity of algae to arsenate has often been linked to the structural similarities between arsenate and phosphate. Thus, in this study we examined the effects of arsenate (10(-8) to 10(-4) M) on Microcystis aeruginosa TY-1 isolated from Taiwan, under two phosphate regimes. The present study showed that M. aeruginosa TY-1 was arsenate tolerant up to 10(-4) M, and that this tolerance was not affected by extracellular phosphate. However, it seems that extracellular phosphate contributed to microcystin production and leakage by M. aeruginosa in response to arsenate. Under normal phosphate conditions, total toxin yields after arsenate treatment followed a typical inverted U-shape hormesis, with a peak value of 2.25 +/- 0.06 mg L-1 in the presence of 10(-7) M arsenate, whereas 10(-8) to 10(-6) M arsenate increased leakage of similar to 75% microcystin. Under phosphate starvation, total toxin yields were not affected by arsenate, while 10(-6) and 10(-5) M arsenate stimulated microcystin leakage. It is suggested that arsenate may play a role in the process of microcystin biosynthesis and excretion. Given the arsenic concentrations in aquaculture ponds in Taiwan, arsenate favors survival of toxic M. aeruginosa in such ponds, and arsenate-stimulated microcystin production and leakage may have an impact on the food chain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of estradiol (E(2)) on growth hormone (GH) production was investigated in gonad-intact female goldfish. It was first necessary to generate a specific antibody for use in immunocytochemistry, Western, and dot-blot analyses of GH production. To accomplish this, grass carp GH (gcGH) cDNA was cloned by the reverse transcription polymerase chain reaction (RT-PCR) and expressed in Echerichia coli and a specific polyclonal antibody to recombinant gcGH was generated in the rabbit. In Western blot, the anti-gcGH antibody specifically immunoreacted with recombinant gcGH, purified natural common carp GH, and with a single 21.5-kDa GH form from pituitary extracts of grass carp, common carp, goldfish, and zebrafish but not salmon, trout, or tilapia. Intraperitoneal injection of the recombinant gcGH enhanced the growth rates of juvenile common carp demonstrating biological activity of this GH preparation. Electron microscopic studies showed that the anti-gcGH-I antibody specifically reacted with GH localized in the secretory granules of the goldfish somatotroph. Using anti-gcGH-I in a dot-blot assay, it was found that in vivo implantation of solid silastic pellets containing E(2) (100 mu g/g body weight for 5 days) increased pituitary GH content by 150% in female goldfish. In a second, independent study employing a previously characterized anticommon carp GH antibody for radioimmunoassay, it was found that E(2) increased pituitary GH content by 170% and serum GH levels by approximately 350%. The E(2)-induced hypersecretion of GH and increase in pituitary GH levels was not associated with changes in steady-state pituitary GH mRNA levels, suggesting that this sex steroid may enhance GH synthesis at the posttranscriptional or translational level. Previous observations indicate that GH can stimulate ovarian E(2) production. The present results show that E(2) can in turn stimulate GH production, indicating the existence of a novel pituitary GH-ovarian feedback system in goldfish. (C) 1997 Academic Press.