2 resultados para Pork slaughter

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Taenia solium metacestode, a larval pork tapeworm, is a causative agent of neurocysticercosis, one of the most common parasitic diseases in the human central nervous system. In this study, we identified a cDNA encoding for a cathepsin L-like cysteine protease from the T solium metacestode (TsCL-1) and characterized the biochemical properties of the recombinant enzyme. The cloned cDNA of 1216 bp encoded 339 amino acids with an approximate molecular weight of 37.6 kDa which containing a typical signal peptide sequence (17 amino acids), a pro-domain (106 amino acids), and a mature domain (216 amino acids). Sequence alignments of TsCL-1 showed low sequence similarity of 27.3-44.6 to cathepsin L-like cysteine proteases from other helminth parasites, but the similarity was increased to 35.9-55.0 when compared to mature domains. The bacterially expressed recombinant protein (rTsCL-1) did not show enzyme activity; however, the rTsCL-1 expressed in Pichia pastoris showed typical biochemical characteristics of cysteine proteases. It degraded human immunoglobulin G (IgG) and bovine serum albumin (BSA), but not collagen. Western blot analysis of the rTsCL-1 showed antigenicity against the sera from patients with cysticercosis, sparganosis or fascioliasis, but weak or no antigenicity against the sera from patients with paragonimiasis or clonorchiasis. (c) 2006 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Forty-five male yaks (born April 2001) were studied to determine how seasonal changes on the Qinghai-Tibetan plateau affected BW and body composition. Thirty yaks were weighed monthly from birth to 26 mo of age to determine seasonal changes in BW. The remaining 15 yaks were allocated randomly to five groups (three yaks per group), designated for slaughter at 13, 15, 18, 22, and 25 mo to measure seasonal effects on body chemical composition. All yaks were grazed on the alpine-meadow grassland of the plateau without any supplementation. All BW and body composition data were calculated on an individual basis. Body weight and body composition data were both compared across seven growth periods spanning 2 yr and defined by season. From April (birth) to December 2001 of the first growing season, yak BW increased (P < 0.01); however, during the subsequent cold season (December 2001 to May 2002), BW decreased (P < 0.01). The second growing season ran from May 2002 (13 mo of age) to October 2002 (18 mo of age), and the second live weight-loss season ran from October 2002 until May 2003. The weight loss experienced by yaks during the first weight loss season was 25.64% of the total weight gain in the first growing season. The weight loss experienced by yaks during the second weight-loss season was 29.73% of the total weight gain in the second growing season. Energy retention in the second growing season was 291.07 MJ, 50.8% of which was consumed during the subsequent cold season. Energy accumulation in the summer (from May to July) and fall (from July to October) of the second growing season did not differ (5.01 and 6.30 MJ/kg of EBW gain, respectively; P = 0.63). The energy mobilized during the second winter (from October 2002 to February 2003) was 16.49 MJ/kg of EBW, and in the second spring (from February to May 2003), it was 9.06 MJ/kg of EBW. These data suggest that the decrease in grazing yak BW during the first cold season is much less than during the second cold season, and that the energy content per unit of BW mobilized is greater (P = 0.02) in winter than in spring. Results from this study demonstrate highly efficient compensatory growth in grazing yaks following the first weight loss period during the first cold season. This benefit could be exploited by herders to improve yak production. Yaks may have developed a type of self-protection mechanism to overcome the long cold seasons in the Qinghai-Tibetan plateau.