7 resultados para Popularization
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
近年来,我国炼油行业发展迅速,炼油能力全世界第二,炼油行业已成为污染大户。本研究针对炼油废水生物处理中存在的稳定达标难、抗冲击负荷能力差、建设投资与运行成本高等问题,就菌剂强化处理炼油废水中试与工程应用展开了研究,以期为菌剂的工程应用与推广提供理论参考与技术支持;并以炼油废水中的主要特征污染物苯酚为研究对象,考察了不同浓度苯酚冲击下功能菌的响应机制,并以此为指导研制功能菌激活促进剂,考察其对功能菌生物学指标的调控效果,以期为废水生物处理有毒污染物冲击调控提供理论依据与技术支持。 中试研究表明,菌剂强化处理炼油废水,出水COD、NH4+-N 平均值为86.7、7.6 mg/L,其平均去除率较常规生物处理系统分别提高了35.47%、59.28%,其耐受COD、NH4+-N 容积负荷分别高达2.42、0.139kg/(m3·d),具有良好的耐冲击能力。工程应用研究表明,菌剂强化处理炼油废水,出水COD、NH4+-N 平均值分别为85.05、8.4mg/L,其去除率较常规生物处理系统提高了25.1%、28.7%,出水水质各项指标均达到了国家《污水综合排放标准GB 8978-1996》一级排放标准。技术经济分析表明,菌剂强化处理炼油废水在建设成本、运行成本上分别降低38%、49%,具有良好的技术经济优势。 苯酚冲击下功能菌响应机制研究表明:不同浓度苯酚冲击下,生物学指标生物量、脱氢酶酶活、1,2-双加氧酶酶活对冲击都有不同程度的响应,其响应敏感程度为脱氢酶酶活>生物量>1,2-双加氧酶酶活。1,2-双加氧酶酶活与COD 降解率相关性良好,可表征苯酚降解过程,确认为调控重点。以此为指导研制出苯酚降解功能菌抗冲击激活促进剂,可有效调控功能菌对有毒污染物苯酚的降解效果,1000mg/L 苯酚冲击下,经调控,其COD 去除率较对照提高20%,降解时间缩短16%以上。其对生物学指标的调控效果为1,2-双加氧酶酶活>生物量>脱氢酶酶活,验证了功能菌在苯酚冲击下的响应机制。研究表明菌剂强化处理炼油废水切实可行,具有良好的技术经济优势。有毒污染物冲击下废水生物处理系统响应机制研究为抗冲击调控提供了新的研究思路。 Currently, China’s oil refining industry is developing rapidly and has become the second largest all over the world. The oil refining industry is one of the major pollution industries in our country. The pilot scale study and engineering application research were conducted aiming at the problems in refining wastewater such as poor treatment stability and water quality, poor anti-shock capacity and expensive running cost, etc., so as to provide theoretical references and technological supports for the engineering application and popularization of microbial preparation in wastewater treatment. Also, the response mechanism of functional microbe under shock of different phenol concentrations, which is the main pollutants in refinery wastewater, was studied. Based on this result, functional microbe activation accelerator was developed, and the regulation effect of functional microbe biological index under phenol shocking were studied, in order to provide theoretical basis and technological support for regulation of toxic shocking of wastewater biological treatment. The result of pilot scale research indicated: for treatment of refinery wastewater in bioaugmention treatment system of microbial preparation, the COD and NH4+-N average value of effluent was 86.7 and 7.6 mg/L, Comparing with normal biological treatment system, the average removal rates of COD, NH4+-N increased 35.47%,59.28% separately by bioaugmention treatment system, which showed better anti-shocking capacity, the volumetric load r of COD and NH4+-N reached 2.42 kg/(m3·d) and 0.139 kg/(m3·d), respectively. The research on engineering application of refinery wastewater bioaugmentation treatment by microbial preparation indicated:the average concentrations of effluent COD and NH4+-N in the bioaugmentation treatment system were 85.05 and 8.4mg/L, which increased by 25.1% and 28.7% comparing with normal biological treatment system of refinery wastewater, And the effluent quality meets the first grade of discharging standard of National Integrated Wastewater Discharge Standard GB 8978-1996. The economic analysis of technology indicated: the demonstration project of bioaugmentation treatment of refinery wastewater by microbial preparation decreased by 38% in construction cost and 49% in running cost. This technology has economic benefits. The response mechanism of functional microbe under phenol shock indicated: biological index such as the biomass concentration, dehydrogenase and 1,2-dioxygenase had different responses under phenol shocking of different concentrations. The response sensitivity of different biological index under phenol shocking of different concentrations is: dehydogenase activity > biomass >1,2-dioxygenase activity, and high correlation of 1,2-dioxygenase and COD degradation percentage is achieved, thus 1,2-dioxygenase could be used to reflect the degradation situation of pollutants. So, 1,2-dioxygenase is the keypoint of regulation. The anti-shock activation accelerator of phenol degradation functional microbe was primarily developed. The results indicated: the activation accelerator could regulate the degradation effect of toxic substance-phenol by functional microbe effectively. For the functional microbe treatment system under phenol shocking of 1000mg/L, the COD degradation rate increased by 20% and the degradation time reduced by more than 16% under regulation of activation accelerator. The regulation effects of biological index are: 1,2-dioxygenase > biomass > dehydrogenase. In this way, the response mechanism of functional microbe under toxic shocking is verified. The result indicated: the augmented microbial preparation treatment of refinery wastewater is applicable. It has many technical and economical advantages. The research results of responses mechanism of wastewater treatment system on toxic pollutants would offer a new idea for regulation of anti-shock.
Resumo:
根据渭北旱塬自然经济特点 ,提出了该区农业持续发展的关键技术和增产新途径——农田高效优化种植模式 (以双元覆盖小麦为主 )。通过 4a的试验示范与推广 ,结果表明 :该模式可较对照增产小麦6 2 .92 % ;复种黄豆增收 1 5 0 0~ 2 2 5 0 kg/ hm2 ,较对照增产 1 0 0 %。该模式的聚水、保墒、增温和促进有机质矿化、增加土壤养分效应显著 ,可使土壤水、热环境改善 ,充分利用水资源 ,提高用水效率。
Resumo:
The anchorages are unparalleled structures only in a suspension bridge, and as main bearing facilities, play an important role in connecting the superstructures and the ground. The tunnel anchorage, as one alternative type of the anchorages, has more advantages over its counterpart, the gravity anchorage. With the tunnel anchorages adopted, not only can surface excavation be reduced to protect the environment, and natural condition of the rock be utilized and potential bearing capacity of surrounding rock be mobilized to save engineering cost, but also the technological predominance of auxiliary engineering measures, such as prestressed concrete, anchoring piles, rock anchors and collar beam between the two separated anchorages, can be easily cooperated to work together harmoniously under the circumstances of poor rock quality. There are plentiful high mountains and deep canyons in west part of China, and long-span bridge construction is inevitably encountered in order to realize leapfrogging development of the transportation infrastructure. Western mountainous areas usually possess the conditions for constructing tunnel anchorages, and therefore, the tunnel anchorages, which are conformed to the conception of resource conservative and sustainable society, extremely have application and popularization value in western underdeveloped region. The scientific and technological problem about the design, construction and operation of tunnel anchorages should be further investigated. Combining the engineering of western tunnel anchorages for the Balinghe Suspension Bridge, this paper probed into the survey method and in-situ test method for tunnel anchorages, scientific rock quality evaluation of surrounding rock to provide reasonable physical and mechanical parameters for design, construction and operation of tunnel anchorages, bearing capacity estimation for tunnel anchorage, deformation prediction of the anchorage-rockmass system, tunnel-anchorage slope stability analysis and the evaluation of excavation stability and degree of safety of the anchorage tunnel. The following outcomes were obtained: 1. Materials of tunnel anchorages of suspension bridge built (and in progress) at home and abroad were systematically sorted out, with the engineering geological condition and geomechanical property of surrounding rock around the anchorage tunnel, the design size of anchorages and the construction method of anchorage tunnel paid more emphasis on, to unveil the internal relationship between the engineering geological conditions of surrounding rock and the design size and axis angle of anchorages and provide references for future design, construction and study of tunnel anchorages. 2. Physical and mechanical parameters were recommended based on three domestic and foreign methods of rock quality evaluation. 3. In-situ tests, adopting the back-thrust method, of two kinds of reduced scale model, 1/30 and 1/20, for the tunnel anchorages were conducted in the declining exploration drift with rock mass at the test depth being the same as surrounding rock around real anchorages, and reliable field rockmass displacement data were acquired. Attenuation relation between the increment of distance from the anchorage and the decrement of rockmass displacement under maximum test load, and influential scope suffered by anchorage load were obtained. 4. Using similarity theory, the magnitude of real anchorage and rockmass displacement under design load and degree of safety of the anchorage system were deduced. Furthermore, inversion analysis to deformation modulus of slightly weathered dolomite rock, the surrounding rock of anchorage tunnel, was performed by the means of numerical simulation. 5. The influential law of the geometrical size to the limit bearing capacity of tunnel anchorage was studied. 6. Based on engineering geological survey data, accounting for the combination of strata layer and adverse discontinuities, the failure patterns of tunnel anchorage slope were divided into three modes: sliding of splay saddle pier slope, superficial-layer slippage, and deep-layer slippage. Using virtual work principle and taking anchorage load in account, the stability of the three kinds of failure patterns were analyzed in detail. 7. The step-by-step excavation of anchorage tunnel, the numerical overload and the staged decrement of rock strength parameters were numerically simulated to evaluate the excavation stability of surrounding rock around anchorage tunnel, the overload performance of tunnel anchorage, and the safety margin of strength parameters of the surrounding rock.
Resumo:
The engineering geological properties of Neogene hard clays and related engineering problems are frontiers in the fields of Engineering Geology, Soil Mechanics and Rock Mechanics. Recently, it has been recognized that Neogene hard clay is the intermediate type of material between the soil and the rock. Many aspects of them, such as sampling, testing, calculating and engineering process, are special, which could not be researched by means of theories and methods of traditional Soil Mechanics of Rock Mechanics. In order to get real knowledge and instruct the engineering practice, intersect studying of multiple disciplines, including Engineering Geology, Soil Mechanics and Rock Mechanics, etc., is necessary. Neogene hard clay is one of the important study objects of regional problem rocks & soils in our country, which extensively distributed in China, especially in Eastern China. Taking the related areas along the middle line of the Project of Transferring Water from the South to the North (e.g. Nanyang basin, Fangcheng-Baofeng area and Handan-Yongnian area), South-west of Shandong, Xu-Huai area and Beijing area, etc. as main study areas, the paper divided Neogene hard clays into reduction environment dominated origin and oxidation environment dominated origin, which distributed on areas western and eastern to Mount Taihangshan respectively. Intermediate types are also existed in some areas, which mainly distribute near the edges of depositional basins; they are usually of transitions between diluvial and lacustrine deposits. As to Neogene hard clays from Eastern China, the clay particle content is high, and montmorillonite or illite/montmorillonite turbostratic mineral is the dominating clay mineral. The content of effective montmorillonite is very high in each area, which is the basis for the undesirable engineering properties of Neogene hard clays. For hard clays from the same area, the content of effective montmorillonite in gray-greenish hard clay is much higher than that in purple-brownish or brown-yellowish hard clay, which is the reason why the gray-greenish hard clay usually has outstanding expansive property. On the other hand, purple-brownish or brown-yellowish hard clay has relatively less montmorillonite, so its property is better. All of these prove that the composition (clay mineral) of Neogene hard clay is the control factor for the engineering properties. Neogene hard clays have obvious properties such as fissured, overconsolidated and expansive, which are the main reasons that many engineering problems and geological harzards usually occur in Neogene hard clays. The paper systematically elaborates the engineering properties of Neogene hard clays from Eastern China, analyses the relationships between engineering properties and basic indexes. The author introduces the ANN method into the prediction of engineering property indexes of hard clays, which provides a new way for quantitatively assessment and prediction of engineering property indexes. During investigation in the field, the author found that there exists obvious seam-sheared zone between different hard clays in Miocene Xiacaowan formation in Xu-Huai area. Similar phenomenon also exists near the borderline between Neogene hard clays and underlying coal measures in the Southwest of Shandong province, which could be observed in the cores. The discovery of seam-sheard zone has important theoretical and practical significance for engineering stability analysis and revealing the origin of fissures in Neogene hard clays. The macrostructure, medium structure and microstructure together control the engineering properties of hard clays. The author analyses and summarizes the structural effects on hard clays in detail. The complex of the strength property of hard clays is mostly related to the characteristics of fissures, which is one of the main factors that affect the choice of shear strength parameters. So structure-control theory must be inseparably combined with composition-control theory during the engineering geological and rock/soil mechanics research of hard clays. The engineering properties, such as fissured, overconsolidated and expansive, control the instability of engineering behaviors of Neogene hard clays under the condition of excavation, i.e. very sensitive to the change of existence environment. Based on test data analysis, the author elaborates the effects of engineering environment change on the engineering properties. Taking Nanyang basin as example, the author utilizes FEM to study the effects of various factors on stability of cutting canal slopes, than sets forth the characteristics, development laws and formation mechanism of the deformation and failure of hard clay canal slopes, summarizes the protection and reinforcement principles, as well as the protection and remedy steps. On the basis of comparison of engineering properties of domestic and foreign Neogene muddy deposits, in the view of whole globe and associated with the geological characteristics of China, the paper demonstrates that the intermediate type of the material between the soil and the rock, named "hard clay/soft rock", which can not be separated abruptly, really exists in China. The author has given a preliminary classification based on its geological origin and distribution law, which is very significant for promoting the mixture of Engineering Geology, Soil Mechanics and Rock Mechanics. In the course of large scales engineering construction in China, many engineering experiences and testing data are gained, summarizing these testing results and automatically managing them with computer technology are very necessary. The author develops a software named "Hard Clay-Soft Rock Engineering Geological Information Management and Analysis System (HRGIMS)", realizes the automatic and visual management of geo-engineering information, on the basis of information management, the functions of test data analysis and engineering property prediction are strengthened. This system has well merits for practice and popularization.
Resumo:
At present the main object of the exploration and development (E&D) of oil and gas is not the structural oil-gas pools but the subtle lithological oil-gas reservoir. Since the last 90's, the ratio of this kind of pools in newly-added oil reserves is becoming larger and larger, so is the ratio in the eastern oilfields. The third oil-gas resource evaluation indicates the main exploration object of Jiyang depression is the lithological oil-gas pools in future. However, lack of effective methods that are applied to search for this kind of pool makes E&D difficult and the cost high. In view of the urgent demand of E&D, in this paper we deeply study and analyze the theory and application in which the seismic attributes are used to predict and describe lithological oil-gas reservoirs. The great results are obtained by making full use of abundant physics and reservoir information as well as the remarkable lateral continuity involved in seismic data in combination with well logging, drilling-well and geology. ①Based on a great deal of research and different geological features of Shengli oilfield, the great progresses are made some theories and methods of seismic reservoir prediction and description. Three kinds of extrapolation near well seismic wavelet methods-inverse distance interpolation, phase interpolation and pseudo well reflectivity-are improved; particularly, in sparse well area the method of getting pseudo well reflectivity is given by the application of the wavelet theory. The formulae for seismic attributes and coherent volumes are derived theoretically, and the optimal method of seismic attributes and improved algorithms of picking up coherent data volumes are put forward. The method of making sequence analysis on seismic data is put forward and derived in which the wavelet transform is used to analyze not only qualitatively but also quantitatively seismic characteristics of reservoirs.② According to geologic model and seismic forward simulation, from macro to micro, the method of pre- and post-stack data synthetic analysis and application is put forward using seismic in close combination with geology; particularly, based on making full use of post-stack seismic data, "green food"-pre-stack seismic data is as possible as utilized. ③ In this paper, the formative law and distributing characteristic of lithologic oil-gas pools of the Tertiary in Jiyang depression, the knowledge of geological geophysics and the feasibility of all sorts of seismic methods, and the applied knowledge of seismic data and the geophysical mechanism of oil-gas reservoirs are studied. Therefore a series of perfect seismic technique and software are completed that fit to E&D of different categories of lithologic oil-gas reservoirs. ④ This achievement is different from other new seismic methods that are put forward in the recent years, that is multi-wave multi-component seismic, cross hole seismic, vertical seismic, and time-lapse seismic etc. that need the reacquisition of seismic data to predict and describe the oil-gas reservoir. The method in this paper is based on the conventional 2D/3D seismic data, so the cost falls sharply. ⑤ In recent years this technique that predict and describe lithologic oil-gas reservoirs by seismic information has been applied in E&D of lithologic oil-gas reservoirs on glutenite fans in abrupt slop and turbidite fans in front of abrup slop, slump turbidite fans in front of delta, turbidite fans with channel in low slope and channel sanbody, and a encouraging geologic result has been gained. This achievement indicates that the application of seismic information is one of the most effective ways in solving the present problem of E&D. This technique is significant in the application and popularization, and positive on increasing reserves and raising production as well as stable development in Shengli oilfield. And it will be directive to E&D of some similar reservoirs
Resumo:
This paper is belonging to Chinese Petrochemical Industry Corporation's key project. Although it is very difficult, it has important theoretical and practical value. Its targets is to make lithological petroleum pool exploration great breakthrough in Dongying sag, by applying advanced theories, the last-minute methods and technology in highly explored zones. By using synthetically multi- discipline theories, methods and technology such as petroleum geology, sedimentology, structure geology, rock mechanics, dynamics of petroleum pool formation, geochemistry, geophysics and so on, and by making full use of computer , the process of petroleum pool forming and distribution rules of lithological petroleum pools have been thoroughly investigated and analyzed in sharp-slope, gentle-slope as well as low-lying region of Dongying sag including dynamic and static. With the study of tectonic stress field, fluid potential field and pressure field, we revealed dynamics condition, distribution rule, control factors and petroleum forming mechanism of lithological pool, and established the forming mode of lithological pool of Dongying sag. The main conclusion as follow: Strata framework, structure framework and sedimentary system of Dongying sag have been established which were the basis of petroleum prediction. There are three kinds of oil source which were from Es4,Es3 and mixed type, also three petroleum forming phases which were the telophase of Dongying stage, Guantao stage and Minghuazhen group, which occur in different geological environment. By using of most advanced numerical modeling software, the space distribution and time evolve of stress field and fluid potential field have been revealed from Esl up to the present. The region with low earth stress and low fluid potential were enrichment region of lithological petroleum pool and fault-block pool. The dynamics mechanism of Lithological petroleum pool in Dongying sag was collocating seal box, abnormity pressure, index number of petroleum forming and static factors on time and space, which was the most important factor of controlling petroleum pool forming, distribution and enrichment. The multi phase active and evolve of seal and unseal about different order fault were main factors of controlling petroleum pool forming of Dongying sag, which have important value for predicting lithological petroleum pool. It is revealed the lithological petroleum pool forming mode that included respective character, forming mechanism and distribution rule in four structural belt, which was a base for lithological petroleum pool prediction. The theories, technology and methods of studying, description, characterize and prediction lithological petroleum pool were established, which have important popularization value. Several lithological pool have been predicted in stress transform, zone, abrupt slope zone, fractured surface changed zone, tosional stress growth zone and abnormity pressure zone with noticeable economic benefit after exploration.
Resumo:
Through years of practice, reservoir management has already become the basic mode of foreign oil companies to realize the high-efficient development of the oil field. From the view of reservoir development and technological economy, reservoir management regards the study of the reservoir engineering, designs of reservoir projects and the dynamic analysis of the reservoir's performance as a system. In the fields of reservoir description, the establishment of the geological models and development models, the dynamic simulations of reservoir exploitation and the design of the oil engineering, reservoir management emphasizes the cooperation of the geology and the engineering, the combination of the engineering technology and the economic evaluation. In order to provide the means and basis for the reservoir geology study, reservoir evaluation, reserves calculation, numerical simulation, development plan and risk analysis, it adopts the reservoir management activities(team work) to make and implement the optimized oil field development management strategies so that secientific and democratic decision making can be achieved. Under the planned economic system for a long time, the purpose of Chinese reservoir development has been to fulfill the" mandatory" production task. With the deepening of the reform, the management organization of Chinese petroleum enterprises has been gradually going through the transition and reforms to the operational entity and the establishment of the mode of oil companies under the socialist market economy system. This research aims at introducing the advanced reservoir management technique from foreign countries to further improve the reservoir development results and wholly raise the economic benefits of Chinese mature land facieses sandstone reservoirs in the later stage of the water flooding. We are going to set up a set of modern reservoir management modes according to the reservoir features, current situation and existing problems of GangXi oil field of DaGang oil company. Through the study and implementation of the reservoir description and numerical simulation technology effectively, we plan to work out integrated adjustment projects, to study the related technology of oil recovery; to set up the effective confirmable data procedure and data management system of the reservoir management, to establish the coordinated model and workbench related to geology, engineering and economy in order to realize the real time supervision and evaluation on the process of reservoir development. We hope to stipulate modernization management tools for GangXi oil fields to rationally utilize various kinds of existing technological methods and to realize the economic exploitation and achieve the maximum benefits from the reservoir. The project of the modem reservoir management will be carried out on the GangXi oil field of DaGang oil company for this oil field is typical and has integrated foundamental materials and perfect networks. Besides, it is located in the good geographical position enjoying very convenient traffic. Implementing modern reservoir management will raise the recovery ratio, reduce the production cost and improve the working efficiency. Moreover, the popularization of modern reservoir management will improve the comprehensive benefits of DaGang oil company and even the whole Petro China. Through the reserch of this project, the following technical indicators can be reached: Establishing the concept of modern reservoir management. Establishing a set of integrated data information management system adapt to the features of GangXi reservoir. 3. Forming technical research modes of modern reservoir management suitable for mature reservoirs in the later developing stage. 4. Advancing projects of GangXi reservoir which are maxium optimized in engineering technique and economic benefits of oil exploitation. Besides, this set of technology, research principle and method can guide the mature reservoir of DaGang oil field and even the whole PetroChina to develop the further research of reservoir adjustment and improve the reservoir recovery factor and developing level constantly.