69 resultados para Polymer materials

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Micropatterning of functional polymer materials by micromolding in capillaries (MIMIC) with ice mold is reported in this paper. Ice mold was selected due to its thaw or sublimation. Thus, the mold can be easily removed. Furthermore, the polymer solution did not react with, swell, or adhere to the ice mold, so the method is suitable for many kinds of materials (such as P3HT, PMMA Alq(3)/PVK, PEDOT: PSS, PS, P2VP, etc.). Freestanding polymer microstructures, binary polymer pattern, and microchannels have been fabricated by the use of ice mold freely.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

在室温下用聚焦的飞秒激光照射高折射率、低双折射的透明含芴结构树脂-对苯二甲酸乙二醇酯(PET)共聚物,探索飞秒激光制备高分子光学功能微结构的可能性。通过紫外-可见吸收光谱、红外光谱、电子自旋共振谱、光学显微镜、扫描电镜及透射电镜等分析手段,对该材料在飞秒激光照射后的结构变化及机理进行研究。结果发现:含芴结构树脂共聚物在飞秒激光照射后产生化学键断裂,生成未成对电子,并形成无定形碳;照射区在可见光区域的吸收增强;随激光能量密度的减少在激光会聚点附近诱导结构由慧尾状向单一细丝转变。演示了三维着色内雕。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

高分子发光材料除应具有优良发光性能外,还需具有优良电子传输性能和空穴传输性能。本论文以此为出发点,将具有优良空穴传输性能的芳胺类化合物和具有优良电子传输性能的噁二唑类化合物,通过无规共聚合调控发光基元和两类传输基元的含量,合成了系列的传输与发光一体化的即V类高分子发光材料,并探讨了聚合物本身的基本特性。同时,设计和制备了相应的单层结构器件和掺杂器件,考察了器件的器件性能。本论文主要工作内容及结果如下:1、成功的利用三类王芳胺类双醛:4,4'-二醛基-(4-辛氧基-苯基)-二苯胺(TPA双醛)、N,N'-二(4-辛氧基一苯基)-N,N'-二(4-甲醛基-苯基)-1,4-苯二胺(PDA双醛)和N,N,-二(4-辛氧基-苯基)-N,N,-二(4-甲醛基-苯基)-4,4' 联苯二胺(TPD双醛)和wittig麟盐无规共聚,得到三个系列双极传输高分子发光材料。2、聚合物主链中同时引入三芳胺类空穴传输基团和噁二唑电子传输基团,提高了器件性能。在TPA系列中,同时含有三芳胺和噁二唑全基团的聚合物比仅含有三芳胺基团聚合物的单层器件亮度及效率分别提高29和22倍,同时使器件的启动电压从9.3V下降到2.7V。在同样比较的情况下,在PDA系列中,聚合物的器件亮度及效率要提高近8倍,同时使器件的启动电压从5.3V下降到4.5V。在TPD系列中,聚合物的器件亮度及效率要提高44和38倍,同时使器件的启动电压从7.5V下降到5.7V。3、含有噁二唑基团聚合物分子的这种D-A体系所具有的分子内电荷转移性质,导致其荧光光谱和电致发光光谱红移。其中,TPA系列和TPD系列的电致发光光谱从绿光红移到了黄绿光,而PDA系列聚合物的电致发光光谱从黄绿光红移到了橙光。4、刚性的噁二唑基团的引入提高了聚合物的热稳定性,T以系列聚合物、PDA系列聚合物和TPD系列聚合物中含有噁二唑基团的聚合物的玻璃化转变温度在112-229℃之间,其热分解温度超过420℃。5、此三个系列聚合物中同时含有空穴和电子传输基元的双极分子溶液的紫外一可见吸收光谱和荧光光谱都有明显的溶剂化效应,表现出较强的分子内电荷转移特性。6、利用TPA系列聚合物中性能最好的聚合物TPA-OXD-PV1的良好电子和空穴传输性质,构造的单层掺杂器件,实现了橙色和红色发光。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

4-Hydroxyphthalic anhydride, prepared from 4-chlorophthalic anhydride, was reacted with trimellitic anhydride monoacid chloride or arylene diacid chloride to give aromatic ester-containing dianhydrides (EDAs). These dianhydrides were characterized by element analysis, melt point, FTIR and H-1-NMR. A series of aromatic poly (amic ester acid)s was synthesized by polycondensation of these EDAs and various diamines in polar organic solvent. The inherent viscosity of poly (amic ester acid)s ranged from 0.55 to 0.89 dL/g, indicating the intermediate to higher molecular weight. Polyesterimides having glass transition temperatures between 184-219degreesC were produced by thermal imidization of corresponding poly (amic ester acid)s. These polymers were fairly resistant to organic solvent, but some of them were soluble in phenol solvents. Thermogravimetric analyses revealed that these polyesterimides were stable up to 400degreesC, and the 5% weight loss temperatures were recorded in the range of 432-483degreesC in air atmosphers and 451-490degreesC in nitrogen.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report several kinds of interpenetrating polymer networks (IPNs) with nonlinear optical (NLO) properties. DMA spectra show that the two components of the IPNs have good compatibility with each other. The NLO materials have good optical transparency. The thermal stability of alignment was improved and the poled order remained very high. (C) 1999 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the rigid particle filled polymer is studied in the hope to understand the real damage mechanisms. Two damage parameters were introduced and measured. One is the macro-damage of the materials calculated from the modulus measured, another is micro-damage describing the interfacial debonding or the percentage of the particle debonded from the matrix. The damage rate of the macro damage decreases, while the micro damage increases with the applied stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tensile deformation and failure of polymer bonded explosives (PBXs), a particulate composite, is studied in this paper. Two HMX-based PBXs with different binder were selected for study. A diametric compression test, in which a disc-shaped specimen is loaded diametrically, was chosen to generate tensile failure in the materials. The quasi-static tensile properties and the tensile creep properties were studied by using conventional displacement transducers to measure the lateral strain along the horizontal diameter. The whole-field in-plane creep deformation was measured by using the technique of high resolution moire´ interferometry. Real time microscopic examination was conducted to monitor the process of deformation and failure of PBXs by using a scanning electron microscope equipped with a loading stage. A manifold method (MM) was used to simulate the deformation and failure of PBX samples under the diametric compression test, including the crack initiation, crack propagation and final cleavage fracture. The mechanisms of deformation and failure of PBXs under diametric compression were analyzed. The diametric compression test and the techniques developed in this research have proven to be applicable to the study of tensile properties of PBXs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer bonded explosives (PBXs) are highly particle filled composite materials comprised of explosive crystals and a polymeric binder (ca. 5-10% by weight). The microstructure and mechanical properties of two pressed PBXs with different binder systems were studied in this paper. The initial microstructure of the pressed PBXs and its evolution under different mechanical aggressions were studied, including quasi-static tension and compression, ultrasonic wave stressing and long-pulse low-velocity impact. Real-time microscopic observation of the PBXs under tension was conducted by using a scanning electron microscope equipped with a loading stage. The mechanical properties under tensile creep, quasi-static tension and compression were studied. The Brazilian test, or diametrical compression, was used to study the tensile properties. The influences of pressing pressures and temperatures, and strain rates on the mechanical properties of PBXs were analyzed. The mesoscale damage modes in initial pressed samples and the samples insulted by different mechanical aggressions, and the corresponding failure mechanisms of the PBXs under different loading conditions were analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results of tensile and compression tests on a short-glass-fiber-reinforced thermotropic liquid crystalline polymer are presented. The effect of strain rate on the compression stress-strain characteristics has been investigated over a wide range of strain rates epsilon between 10(-4) and 350 s-1. The low-strain-rate tests were conducted using a screw-driven universal tensile tester, while the high-strain-rate tests were carried out using the split Hopkinson pressure bar technique. The compression modulus was shown to vary with log10 (epsilon) in a bilinear manner. The compression modulus is insensitive to strain rate in the low-strain-rate regime (epsilon = 10(-4) - 10(-2) s-1), but it increases more rapidly with epsilon at higher epsilon. The compression strength changes linearly with log10 (epsilon) over the entire strain-rate range. The fracture surfaces were examined by scanning electron microscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon nanotubes have unprecedented mechanical properties as defect-free nanoscale building blocks, but their potential has not been fully realized in composite materials due to weakness at the interfaces. Here we demonstrate that through load-transfer-favored three-dimensional architecture and molecular level couplings with polymer chains, true potential of CNTs can be realized in composites as Initially envisioned. Composite fibers with reticulate nanotube architectures show order of magnitude improvement in strength compared to randomly dispersed short CNT reinforced composites reported before. The molecular level couplings between nanotubes and polymer chains results in drastic differences in the properties of thermoset and thermoplastic composite fibers, which indicate that conventional macroscopic composite theory falls to explain the overall hybrid behavior at nanoscale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proton-conducting membranes were prepared by polymerization of microemulsions consisting of surfactant-stabilized protic ionic liquid (PIL) nanodomains dispersed in a polymerizable oil, a mixture of styrene and acrylonitrile. The obtained PIL-based polymer composite membranes are transparent and flexible even though the resulting vinyl polymers are immiscible with PIL cores. This type of composite membranes have quite a good thermal stability, chemical stability, tunability, and good mechanical properties. Under nonhumidifying conditions, PIL-based membranes show a conductivity up to the order of 1 x 10(-1) S/cm at 160 degrees C, due to the well-connected PIL nanochannels preserved in the membrane. This type of polymer conducting membranes have potential application in high-temperature polymer electrolyte membrane fuel cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Films of high glass' transition temperature polymer polyetherketone doped with chromophore 2,2'[4-[(5-nitro-2-thiazolyl)azophenyl]-amino]-bisethanol NTAB) were prepared, poled by the corona-onset poling setup which includes a grid voltage making the surface-charge distribution uniform at elevated temperature. The thickness of the films was measured by the Model 2010 Prism Coupler system. Second harmonic generation d(33) was measured by the second harmonic generation method, and the d33 is 38.12 pm/V at 1064 nm under the absorption correction. The nonlinear optical activity maintains is 80% of its initial value. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Films of polyetherketone doped with the chromophores Disperse Red 1 (DR1) and Disperse Red 13 (DR13) were prepared by spin-coating method. By the in situ Second-harmonic Generation (SHG) signal intensity measurement, the optimal poling temperatures were obtained. For the investigated polyetherketone polymer doped with DR1 (DR1/PEK-c) and polyetherketone polymer doped with DR13 (DR13/PEK-c) films, the optimal poling temperatures were 150degreesC and 140degreesC, respectively. Under the optimal poling conditions, the high second-order nonlinear optical coefficient chi(33)((2)) = 11.02 pm/V has been obtained for the DR1/PEK-c; and for DR13/PEK-c at the same conditions the coefficient is 17.9 pm/V. The SHG signal intensity DR1/PEK-c could maintain more than 80% of its initial value when the temperature was under 100degreesC, and the SHG signal intensity of the DR13/PEK-c could maintain more than 80% of its initial value when the temperature was under 135degreesC. (C) 2002 Kluwer Academic Publishers.