114 resultados para Polyimides
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A sulfonated dianhydride monomer, 6,6-disulfonic-4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (SBTDA), was successfully synthesized by direct sulfonation of the parent dianhydride, 4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (BTDA), using fuming sulfuric acid as the sulfonating reagent. A series of sulfonated homopolyimides were prepared from SBTDA and various common nonsulfonated diamines. The resulting polymer electrolytes, which contain ion conductivity sites on the deactivated positions of the aryl backbone rings, displayed high proton conductivities of 0.25-0.31 S cm(-1) at 80 degrees C. The oxidative stability test indicated that the attachment of the -SO3H groups onto the dianhydride units did not deteriorate the oxidative stability of the SPI membranes.
Resumo:
The synthesis and characterization of novel acid-base polyimide membranes for the use in polymer electrolyte membrane fuel cell is presented in this paper. The sulfonated polyimides (SPIs) bearing basic triphenylamine groups were easily synthesized using 4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (BTDA), sulfonated diamine of 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid (ODADS), and nonsulfonated diamines of 4,4'-diaminotriphenylamine (DATPA). The effects of the structure of the dianhydride and diamines on the properties of SPI membranes were evaluated through the study of membrane parameters including water sorption, proton conductivity, water stability, dimensional changes, and methanol permeability.
Resumo:
A novel diamine, 1,4-bis [3-oxy-(N-aminophthalimide)] benzene (BOAPIB), was synthesized from 1,4-bis [3-oxy-(N-phenylphthalimide)] benzene and hydrazine. Its structure was determined via IR, H-1 NMR, and elemental analysis. A series of five-member ring, hydrazine-based polyimides were prepared from this diamine and various aromatic dianhydrides via one-step polycondensation in p-chlorophenol. The inherent viscosities of these polyimides were in the range of 0.17-0.61 dL/g. These polymers were soluble in polar aprotic solvents and phenols at room temperature. Thermogravimetric analysis (TGA) showed that the 5% weight-loss temperatures of the polyimides were near 450 degrees C in air and 500 degrees C in nitrogen. Dynamic mechanical thermal analysis (DMTA) indicated that the glass-transition temperatures (T(g)s) of these polymers were in the range of 265-360 degrees C. The wide-angle X-ray diffraction showed that all the polyimides were amorphous.
Resumo:
A novel wholly aromatic diamine, 2,2 '-bis(3-sulfobenzoyl)benzidine (2,2 '-BSBB), was successfully prepared by the reaction of 2,2 '-dibenzoylbenzidine (2,2 '-DBB) with fuming sulfuric acid. Copolymerization of 1,4,5,8-naphathlenetetracarboxylic dianhydride with 2,2 '-BSBB and 2,2 '-DBB generated a series of rigid-rod sulfonated polyimides. The synthesized copolymers with the -SO3H group on the side chain of polymers possessed high molecular weights revealed by their high viscosity and the formation of tough and flexible membranes. The copolymer membranes exhibited excellent oxidative stability and mechanical properties due to their fully aromatic structure extending through the backbone and pendent groups. They displayed clear anisotropic membrane swelling in water with negligibly small dimensional changes in the plane direction of the membrane. The proton conductivities of copolymer membranes increased with increasing IEC and temperature, reaching value above 1.25 x 10(-1) S/cm at 20 degrees C, which is higher than that of Nafion (R) 117 at the same measurement condition. They displayed reasonably high proton conductivity due to the higher acidity of benzoyl sulfonic acid group, the larger interchain spacing, which is available for water to occupy, taking their lower water uptake (WU) into account. Consequently, these materials proved to be promising as proton exchange membrane.
Resumo:
A series of novel oxidation and water stable sulfonated polyimides (SPIs) were synthesized from 4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (BTDA), and wholly aromatic diamine 2,2'-bis(3-sulfobenzoyl) benzidine (2,2'-BSBB) for proton exchange membrane fuel cells. These polyimides could be cast into flexible and tough membranes from m-cresol solutions. The copolymer membranes exhibited excellent oxidative stability and mechanical properties due to their fully aromatic structure extending through the backbone and pendant groups. Moreover, all BTDA-based SPI membranes exhibited much better water stability than those based on the conventional 1,4,5,8-naphthalenecarboxylic dianhydride. The improved water stability of BTDA-based polyimides was attributed to its unique binaphthalimide structure. The SPI membranes with ion exchange capacity (IEC) of 1.36-1.90 mequiv g(-1) had proton conductivity in the range of 0.41 x 10(-1) to 1. 12 x 10(-1) S cm(-1) at 20 degrees C. The membrane with IEC value of 1.90 mequiv g(-1) displayed reasonably higher proton conductivity than Nafion((R)) 117 (0.9 x 10(-1) S cm(-1)) under the same test condition and the high conductivity of 0.184 S cm(-1) was obtained at 80 degrees C. Microscopic analyses revealed that well-dispersed hydrophilic domains contribute to better proton conducting properties. These results showed that the synthesized materials might have the potential to be applied as the proton exchange membranes for PEMFCs.
Resumo:
New asymmetrical aromatic dichlorophthalimide monomers containing pendant groups (trifluoromethyl or methyl) were conveniently prepared from inexpensive and commercially available compounds. With these monomers, a new class of soluble polyimides with a regioirregular structure within the polymer backbone was obtained by the Ni(0)-catalyzed polymerization method. The structures of the polymers were confirmed by various spectroscopic techniques. The polyimides displayed better solubility and higher thermal stability than the corresponding regular polyimides. In addition, fluorinated polyimides in this study had low dielectric constants ranging from 2.52 to 2.78, low moisture absorptions of less than 0.59%, and low thermal expansion coefficients between 10.6 and 19.7 ppm/degrees C. The oxygen permeability coefficients and permeability selectivity of oxygen to nitrogen of the films were in the ranges of 2.99-4.20 barrer and 5.55-7.50, respectively. We have demonstrated that the synthetic pathway for polyimides provides a successful approach to increasing the solubility and processability of polyimides without sacrificing their thermal stability.
Synthesis and properties of novel soluble polyimides having a spirobisindane-linked dianhydride unit
Resumo:
A new synthetic procedure was elaborated allowing the preparation of semiaromatic dianhydride. N-Methyl protected 4-chlorophthalic anhydride was nitrated with HNO3 to produce N-methyl-4-chloro-5-nitrophthalimide (1). The aromatic nucleophilic substitution reaction between 5,5',6,6'-tetrahydroxy-3,3,3',3'-tetramethyl-1,1-spirobisindane and 1 afforded spirobisindane-linked bis(N-methylphthalimide) (2), which was hydrolyzed and subsequently dehydrated to give the corresponding dianhydride (3). The latter was polymerized with five different aromatic diamines to afford a series of aromatic polyimides. The properties of polyimides such as inherent viscosity, solubility, UV transparency and thermal stability were investigated to illustrate the contribution of the introduction of spirobisindane groups into the polyimide backbone. The resulting polyimides were readily soluble in polar solvents such as chloroform, THF and N-methyl-2-pyrrolidone. The glass-transition temperatures of these polyimides were in the range of 254-292 degrees C. The tensile strength, elongation at break, and Young's modulus of the polyimide film were 68.8-106.6 MPa, 5.9-9.8%, 1.7-2.0 GPa, respectively. The polymer films were colorless and transparent with the absorption cutoff wavelength at 286-308 nm.
Resumo:
A novel triptycene-based dianhydride, 1,4-bis[4-(3,4-dicarboxylphenoxy)]triptycene dianhydride, was prepared from 4-nitro-N-methylphthalimide and potassium phenolate of 1,4-dihydroxytriptycene (1). The aromatic nucleophilic substitution reaction between 4-nitro-N-methylphthalimide and I afforded triptycene-based bis(N-methylphthalimide) (2), which hydrolyzed and subsequently dehydrated to give the corresponding dianhydride (3). A series of new polyimides containing triptycene moieties were prepared from the dianhydride monomer (3) and various diamines in in-cresol via conventional one-step polycondensation method. Most of the resulting polyimides were soluble in common organic solvents, such as chloroform, THF, DMAc and DMSO. The polyimides exhibited excellent thermal and thermo-oxidative stabilities with the onset decomposition temperature and 10% weight loss temperature ranging from 448 to 486 degrees C and 526 to 565 degrees C in nitrogen atmosphere, respectively. The glass transition temperatures of the polyimides were in the range of 221-296 degrees C. The polyimide films were found to be transparent, flexible, and tough. The films had tensile strengths, elongations at break, and tensile moduli in the ranges 95-118 MPa, 5.3-16.2%, and 1.03-1.38 GPa, respectively. Wide-angle X-ray diffraction measurements revealed that these polyimides were amorphous.
Resumo:
A series of sulfonated polymides containing benzimidazole groups were synthesized using 4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (BTDA), 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid (ODADS) as the sulfonated diamine, and 2-(3',5-diaminophenyl)benzimidazole (a) or 6,4'-diamino-2-phenylbenzimidazole (b) as the nonsulfortated diamine. The electrolyte properties of the synthesized polyimides Ia-x, Ib-x, x refers to molar percentage of the sulfonated diamine) were investigated and compared with those of polyimides (Ic-x) from BTDA, ODADS, and m-phenylenediamine (c). All synthesized polyimides possessed high molecular weights revealed by their high viscosity, and formation of tough and flexible membranes. Polyintides with benzimidazole groups exhibited much better swelling capacity than those without benzimiclazole groups. This was attributed to the strong interchain interaction through basic benzimidazole functions and sulfonic acid groups. The sulfortated polyimides that are incorporated with 1, 1',8,8'-binaphthalimide exhibited better hydrolytic stability than that with 1,4,5,8-naphthalimide. Polyimide membranes with good water stability as well as high proton conductivity were developed. Polyimide membrane (Ia - 90), for example, did not lose mechanical properties after being soaked in boiling water for tOOO h, while its proton conductivity was still at a high level (compared to that of Nafion 117).
Resumo:
A one-pot synthesis method for the preparation of polyimides containing biphenyl units was developed via nickel-catalyzed coupling reaction of bis(chlorophthalimide)s which were prepared from chloroplithalic anhydrides and diamines in xylene. The resulting polyimides had inherent viscosities of above 0.60dL g(-1). In the meantime, the copolymerizations from a mixture of three isomeric bis(chlorophthalimide)s gave the polymers with inherent viscosities of 0.36-0.55 gdL(-1). The solubility and film formability of the copolymers were better than those of homopolymers from bis(4-chlorophthalimide). The 10% weight loss of these polyimides was between 470 and 531 degrees C.
Resumo:
A novel sulfonated diamine monomer, 1,4-bis(4-aminophenoxy)-naphthyl-2,7-disulfonic acid (BAPNDS), was synthesized. A series of sulfonated polyimide copolymers were prepared from BAPNDS, 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) and nonsulfonated diamine 4,4'-diaminodiphenyl ether (ODA). Flexible, transparent, and mechanically strong membranes were obtained. The membranes displayed slightly anisotropic membrane swelling. The dimensional change in thickness direction was larger than that in planar. The novel SPI membranes showed higher conductivity, which was comparable or even higher than Nafion 117. Membranes exhibited methanol permeability from 0.24 x 10(-6) to 0.80 X 10(-6) cm(2)/s at room temperature, which was much lower than that of Nafion (2 x 10-6 CM2/s). The copolymers were thermally stable up to 340 degrees C. These preliminary results have proved its potential availability as proton-exchange membrane for PEMFCs or DMFCs.
Resumo:
A novel sulfonated diamine monomer, 2,2'-bis(p-aminophenoxy)-1,1'-binaphthyl-6,6'-disulfonic acid (BNDADS), was synthesized. A series of sulfonated polyimide copolymers containing 30-80 mol % BNDADS as a hydrophilic component were prepared. The copolymers showed excellent solubility and good film-forming capability. Atomic force microscopy phase images clearly showed hydrophilic/hydrophobic microphase separation. The relationship between the proton conductivity and degree of sulfonation was examined. The sulfonated polyimide copolymer with 60 mol % BNDADS showed higher proton conductivity (0.0945-0.161 S/cm) at 20-80 degrees C in liquid water. The membranes exhibited methanol permeability from 9 x 10(-8) to 5 X 10(-7) cm(2)/s at 20 degrees C, which was much lower than that of Nafion (2 x 10(-6) cm(2)/s). The copolymers were thermally stable up to 300 degrees C. The sulfonated polyimide copolymers with 30-60 mol % BNDADS showed reasonable mechanical strength; for example, the maximum tensile strength at break of the sulfonated polyimide copolymer with 40 mol % BNDADS was 80.6 MPa under high moisture conditions. The optimum concentration of BNDADS was found to be 60 mol % from the viewpoint of proton conductivity, methanol permeability, and membrane stability.
Resumo:
This review deals with polyimides based on isomeric dianhydrides and diamines, and with chiral polyimides. First, however, a summary is presented of recent work on the synthesis of isomeric dianhydrides, the reaction of mellophanic dianhydride with diamines, and the tendency toward cyclization in reactions of some dianhydrides and diamines. Then turning to polymers, the discussion covers solubility, thermal and dielectric properties, permeability and permselectivity for gas separation, and rheology of isomeric polyimides. Several useful general rules have been found: i.e. the glass transition temperature of polyimides based on isomeric dianhydrides with a given diamine decreases in the order 3,3'- > 3,4'- > 4,4-dianhydride if the polymers are of comparable molecular weight, whereas the thermal stability and the T-beta/T-g ratio (in absolute temperatures) increase in the order of 3,3'- < 3,4'- < 4,4'-dianhydride. Polyimides from 3,3'- or 3,4'-dianhydride have higher solubility than those from 4,4'-dianhydride. Polyimides from 3,4'-dianhydrides exhibit much lower melt viscosity than those from the other isomeric anhydrides. The dielectric constants of polyimides derived from m,m'-diamines are lower than those from p,p'-diamines. Polyimides based on 3,3'- or 3,4'-dianhydrides have higher permeability and slightly lower permselectivity than polyimides based on 4,4'-dianhydrides.
Resumo:
A series of sulfonated polyimides (SPIs) were synthesized in in-cresol from 4,4'-binaphthyl- 1,11,8,8'-tetracarboxylic dianhydride (BNTDA), 4.4'-diaminodiphenylether-2,2-disulfonicacid (ODADS), and 4.4'-diamino-diphenyl ether (ODA) in the presence of triethylamine and benzoic acid. The resulted polyimides showed much better water resistance than the corresponding sulfonated polyimides from 1,4,5,8-naphthatenetetracarboxylic dianhydride (NTDA) and ODADS, which is contributed to the higher electron density in the carbonyl carbon atoms of BNTDA. Copolyimides S-75 and S-50 maintained their mechanical properties and proton conductivities after aging in water at 100 degrees C for 800 h. The proton conductivity of these SPIs was 0.0250-0.3565 S/cm at 20 degrees C and 100% relative humidity (RH), and increased to 0.11490.9470 S/cm at 80 degrees C and 100% RH. The methanol permeability values of these SPIs were in the range of 0.99-2.36 x 10(-7) cm(2)/S, which are much lower than that of Nafion 117 (2 x 10(-6) cm(2)/s).
Resumo:
3,3-Dichloro-N,N'-biphthalimide (3,3'-DCBPI), 3,4'-dichloro-N,N'-biphthalimide (3,4'-DCBPI), and 4,4'-dichloro-N,N'X-biphthalimide (4,4'-DCBPI) were synthesized from 3- or 4-chlorophthalic anhydrides and hydrazine in glacial acetic acid. The yield of 3,3'-DCBPI (90%) was much higher than that of 4,4'-DCBPI (33%) because of the better stability of the intermediate, 3-chloro-N-aminophthalimide, and 3,3'-DCBPI. A series of hydrazine-based polyimides were prepared from isomeric DCBPIs and 4,4-thiobisbenzenethiol (TBBT) in N,N-dimethylacetamide in the presence of tributylamine. Inherent viscosity of these polymers was in the range of 0.51-0.69 dL/g in 1-methyl-2-pyrrolidinone (NMP) at 30 degrees C. These polyimides were soluble in 1,1,2,2-terachloroethane, NMP, and phenols. The 5% weight-loss temperatures (T(g)s) of the polymers were near 450 degrees C in N-2. Their glass-transition temperatures (T(g)s) determined by dynamic mechanical thermal analysis and differential scanning calorimetry increased according to the order of polyimides based on 4,4'-DCBPI, 3,4'-DCBPI, and 3,3'-DCBPI. The hydrolytic stability of these polymers was measured under acid, basic, and neutral conditions and the results indicated that the order was 3,3'-DCBPI/TBBT > 3,4'-DCBPI/TBBT > 4,4'-DCBPI/TBBT.