13 resultados para Polyethylenimine

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyethylenimine (PEI)-protected Prussian blue nanocubes have been simply synthesized by heating an acidic mixture of PEI, FeCl3, K3Fe(CN)(6), and KCI. The experiment results presented here demonstrate that the pH of the mixture plays an important role in controlling the shape and composition of the resultant product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel glucose biosensor based on immobilization of glucose oxidase (GOD) in thin films of polyethylenimine-functionalized ionic liquid (PFIL), containing a mixture of carbon nanotubes (CNT) and gold nanoparticles (AuNPs) and deposited on glassy carbon electrodes, was developed. Direct electrochemistry of glucose oxidase in the film was observed, with linear glucose response up to 12 mM. The PFIL-stabilized gold nanoparticles had a diameter of 2.4 +/- 0.8 nm and exhibited favorable stability (stored even over one month with invisible change in UV-vis spectroscopic measurements).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A smart biodegradable cationic polymer (CBA-PEI) based on the disulfide bond-containing cross-linker cystamine bisacrylamide (CBA) and low molecular weight branched polyethylenimine (1800-Da, PEI1800) was successfully synthesized by Michael addition reaction in our recent study. Furthermore, a series of copolymers (CBA-PEI-PEG) with different PEGylation degree were obtained by the mPEG-SPA (5000-Da) reacting with CBA-PEI at various weight ratios directly. The molecular structures of the resulting polymers CBA-PEI and CBA-PEI-PEG were evaluated by nuclear magnetic resonance spectroscopy (H-1-NMR) and capillary viscosity measurements, all of which had successfully verified formation of the copolymers. The polymer/DNA complexes based on CBA-PEI and CBA-PEI-PEG were measured by dynamic light scattering and gel retardation assay. The results showed that the particle size and zeta potential of complexes were reduced with increasing amount of PEG grafting, even no particle formation. The particle size of CBA-PEI/DNA complexes was in range of 103.1 to 129.1 nm, and the zeta potential was in range of 14.2 to 24.3 mV above the 2:1 weight ratio. In the same measure condition, the particle size of CBA-PEI-PEG complexes was reduced to a range of 32.2 to 55 nm, and the zeta potential was in range of 9.3 to 13.8 mV at the 2:1 weight ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A soluble nonionic surfactant, polyethylenimine 80% ethoxylated (PEIE) solution, was used as the electron injection material in inverted bottom-emission organic light emitting diodes (OLEDs). The transparent PEIE film was formed on indium-tin-oxide cathode by simple spin-coating method and it was found that the electron injection was greatly enhanced. The devices with PEIE electron injection layer had achieved significant enhancement in luminance and efficiency. The maximum luminance reached 47 000 cd/m(2), and the maximum luminance efficiency and power efficiency arrived at 19.7 cd/A and 10.6 lm/W, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We first reported that polyvinylpyrrolidone-protected graphene was dispersed well in water and had good electrochemical reduction toward O-2 and H2O2. With glucose oxidase (GOD) as an enzyme model, we constructed a novel polyvinylpyrrolidone-proteeted graphene/polyethylenimine-ftmctionalized ionic liquid/GOD electrochemical biosensor, which achieved the direct electron transfer of GOD, maintained its bioactivity and showed potential application for the fabrication of novel glucose biosensors with linear glucose response up to 14 mM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-assembling of synthesized novel biodegradable hyperbranched amphiphilic poly(ethylene glycol)-polyethylenimine-poly(epsilon-benzyloxycarbonyl-L-lysine) (PEG-PEI-PLys(Z)) in aqueous media is studied. In aqueous media. PLys(Z) is the hydrophobic segment, with PEG and PEI as the hydrophilic segments. It will self-assemble into spherical shape when the selected solvent water is dropped into the common solvent tetrahydrofuran (THF). And when PEG-PEI-PLYS in common solvent is dropped into mixed solvent water and THF, rings will come into King. The spherical and rings are observed by environmental scanning electron microscopy (ESEM) and transmission electron microscopy ITEM). It shows that the size of the sphere is about 100 nm, and the diameter of ring distributes from 400 nm to 10 mu m and bigger with the time roll around.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A polymeric gene carrier was developed to deliver vascular endothelial growth factor (VEGF) small interfering RNA (siRNA) for prostate cancer cells in a target-specific manner. Prostate cancer-binding peptide (PCP) was conjugated with polyethylenimine (PEI) via a poly(ethylene glycol) (PEG) linker (PEI-PEG-PCP). The PEI-PEG-PCP conjugate could effectively condense siRNA to form stable polyelectrolyte complexes (polyplexes) with an average diameter of approximately 150 nm in an aqueous solution. VEGF siRNA/PEI-PEG-PCP polyplexes exhibited significantly higher VEGF inhibition efficiency than PCP-unmodified polycationic carriers (PEI-PEG or PEI) in human prostate carcinoma cells (PC-3 cells). The enhanced gene silencing activity of VEGF siRNA/PEI-PEG-PCP was maintained even under serum conditions, owing to the steric stabilization of the polyplexes with hydrophilic PEG grafts. Confocal microscopic studies revealed that the siRNA/PEI-PEG-PCP polyplexes were delivered into PC-3 cells in a PCP ligand-specific manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The application of polyethylenimine (PEI) in gene delivery has been severely limited by significant cytotoxicity that results from a nondegradable methylene backbone and high cationic charge density. It is therefore necessary to develop novel biodegradable PEI derivates for low-toxic, highly efficient gene delivery.Methods A series of novel cationic copolymers with various charge density were designed and synthesized by grafting different kinds of oligoethylenimine (OEI) onto a determinate multi-armed poly(L-glutamic acid) backbone. The molecular structures of multi-armed poly(L-glutamic acid)-graft-OEI (MP-g-OEI) copolymers were characterized using nuclear magnetic resonance, viscosimetry and gel permeation chromatography. Moreover, the MP-g-OEI/DNA complexes were measured by a gel retardation assay, dynamic light scattering and atomic force microscopy to determine DNA binding ability, particle size, zeta potential, complex formation and shape, respectively. MP-g-OEI copolymers were also evaluated in Chinese hamster ovary and human embryonic kidney-293 cells for their cytotoxicity and transfection efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complex copolymer of hyperbranched polyethylenimine (PEI) with hydrophobic poly(gamma-benzyl L-glutamate) segment (PBLG) at their chain ends was synthesized. This water-soluble copolymer PEI-PBLG (PP) was characterized for DNA complexation (gel retardation assay, particle size, DNA release and DNase I protection), cell viability and in vitro transfection efficiency. The experiments showed that PP can effectively condense pDNA into particles. Size measurement of the complexes particles indicated that PP/DNA tended to form smaller nanoparticles than those of PEI/DNA, which was caused by the hydrophobic PBLG segments compressing the PP/DNA complex particles in aqueous solution. The representative average size of PP/DNA complex prepared using plasmid DNA (pEGFP-N1, pDNA) was about 96 nm. The condensed pDNA in the PP/pDNA complexes was significantly protected from enzymatic degradation by DNase1. Cytotoxicity studies by MTT colorimetric assays suggested that the PP had much lower toxicity than PEI. The in vitro transfection efficiency of PP/pDNA complexes improved a lot in HeLa cells, Vero cells and 293T cells as compared to that of PEI25K by the expression of Green Fluorescent Protein (GFP) as determined by flow cytometry. Thus, the water-soluble PP copolymer showed considerable potential as carriers for gene delivery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polypeptide/polysaccharide graft copolymers poly(L-lysine)-graft-chitosan (PLL-g-Chi) were prepared by ring-opening polymerization (ROP) of epsilon-benzoxycarbonyl L-lysine N-carboxyanhydrides (Z-L-lysine NCA) in the presence of 6-O-triphenylmethyl chitosan. The PLL-g-Chi copolymers were thoroughly characterized by H-1 NMR, C-13 NMR, Fourier transform infrared (FT-IR), and gel permeation chromatography (GPC). The number-average degree of polymerization of PLL grafted onto the chitosan backbone could be adjusted by controlling the feed ratio of NCA to 6-O-triphenylmethyl chitosan. The particle size of the complexes formed from the copolymer and calf thymus DNA was measured by dynamic light scattering (DLS). It was found in the range of 120 similar to 340 nm. The gel retardation electrophoresis showed that the PLL-g-Chi copolymers possessed better plasmid DNA-binding ability than chitosan. The gene transfection effect in HEK 293T cells of the copolymers was evaluated, and the results showed that the gene transfection ability of the copolymer was better than that of chitosan and was dependent on the PLL grafting ratio. The PLL-g-Chi copolymers could be used as effective gene delivery vectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel, hyperbranched, amphiphilic multiarm biodegradable polyethylenimine-poly(gamma-benZyl-L-gluta- mate) (PEI-PBLG) copolymer was prepared by the ring-opening polymerization of gamma-benzyl-L-glutamate-N-car-boxyanhydride (BLG-NCA) with hyperbranched PEI as a macroinitiator. The copolymer could self-assemble into core-shell micelles in aqueous solution with highly hydrophobic micelle cores. As the PBLG content was increased, the size of the micelles increased and the critical micelle concentration (CMC) decreased. The surface of the micelles had a positive potential. The cationic micelles were capable of complexing with plasmid DNA (pDNA), which could be released subsequently by treatment with polyanions. The PEI-PBLG copolymer formed unimolecular micelles in chloroform solution. ne pH-sensitive phase-transfer behavior exhibited two critical pH points for triggering the encapsulation and release of guest molecules. Both the encapsulation and release processes were rapid and reversible. Under strong acidic or alkaline conditions, the release process became partially or completely irreversible.