9 resultados para Pollution control personnel

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Goal, Scope and Background. Heavy metal is among one of the pollutants, which cause severe threats to humans and the environment in China. The aim of the present review is to make information on the source of heavy metal pollution, distribution of heavy metals in the environment, and measures of pollution control accessible internationally, which are mostly published in Chinese. Methods. Information from scientific journals, university journals and governmental releases are compiled focusing mainly on Cd, Cu, Pb and Zn. Partly Al, As, Cr, Fe, Hg, Mn and Ni are included also in part as well. Results and Discussion. In soil, the average contents of Cd, Cu, Pb and Zn are 0.097, 22.6, 26.0 and 74.2 mg/kg, respectively. In the water of. the Yangtze River Basin, the concentrations of Cd, Cu, Pb and Zn are 0.080, 7.91, 15.7 and 18.7 pg/L, respectively. In reference to human activities, the heavy metal pollution comes from three sources: industrial emission, wastewater and solid waste. The environment such as soil, water and air were polluted by heavy metals in some cases. The contents of Cd, Cu, Pb and Zn even reach 3.16, 99.3, 84.1 and 147 mg/kg, respectively, in the soils of a wastewater irrigation zone. These contaminants pollute drinking water and food, and threaten human health. Some diseases resulting from pollution of geological and environmental origin, were observed with long-term and non-reversible effects. Conclusions. In China, the geological background level of heavy metal is low, but with the activity of humans, soil, water, air, and plants are polluted by heavy metals in some cases and even affect human health through the food chain. Recommendations and Outlook. To remediate and improve environmental quality is a long strategy for the polluted area to keep humans and animals healthy. Phytoremediation would be an effective technique to remediate the heavy metal pollutions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Goal, Scope and Background. In some cases, soil, water and food are heavily polluted by heavy metals in China. To use plants to remediate heavy metal pollution would be an effective technique in pollution control. The accumulation of heavy metals in plants and the role of plants in removing pollutants should be understood in order to implement phytoremediation, which makes use of plants to extract, transfer and stabilize heavy metals from soil and water. Methods. The information has been compiled from Chinese publications stemming mostly from the last decade, to show the research results on heavy metals in plants and the role of plants in controlling heavy metal pollution, and to provide a general outlook of phytoremediation in China. Related references from scientific journals and university journals are searched and summarized in sections concerning the accumulation of heavy metals in plants, plants for heavy metal purification and phytoremediation techniques. Results and Discussion. Plants can take up heavy metals by their roots, or even via their stems and leaves, and accumulate them in their organs. Plants take up elements selectively. Accumulation and distribution of heavy metals in the plant depends on the plant species, element species, chemical and bioavailiability, redox, pH, cation exchange capacity, dissolved oxygen, temperature and secretion of roots. Plants are employed in the decontamination of heavy metals from polluted water and have demonstrated high performances in treating mineral tailing water and industrial effluents. The purification capacity of heavy metals by plants are affected by several factors, such as the concentration of the heavy metals, species of elements, plant species, exposure duration, temperature and pH. Conclusions. Phytoremediation, which makes use of vegetation to remove, detoxify, or stabilize persistent pollutants, is a green and environmentally-friendly tool for cleaning polluted soil and water. The advantage of high biomass productive and easy disposal makes plants most useful to remediate heavy metals on site. Recommendations and Outlook. Based on knowledge of the heavy metal accumulation in plants, it is possible to select those species of crops and pasturage herbs, which accumulate fewer heavy metals, for food cultivation and fodder for animals; and to select those hyperaccumulation species for extracting heavy metals from soil and water. Studies on the mechanisms and application of hyperaccumulation are necessary in China for developing phytoremediation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of cadmium (Cd2+) on growth status, chlorophyll (Chl) content, photochemical efficiency, and photosynthetic intensity were studied on Canna indica Linn. Plant specimens that were produced from a constructed wetland and precultivated hydroponically in 20 L of 1/10 Hoagland solution under greenhouse conditions for I week were exposed to cadmium in concentrations of 0, 0.4, 0.8, 1.6 and 3.2 mg L- Cd2+, respectively. The results show that leaves were injured in the Cd2+ solution by the third day of exposure and the injury became more serious with an increase in the applied heavy metal. Under 3.2 mg L-1 Cd2+ treatment, growth retardation, the decrease of chlorophyll content from 0.70 to 0.43 mg g(-1) FW, and a decrease in Chl a/b ratio from 2.0 to 1.2 were observed. Chl a was more sensitive than Chl b to Cd2+ stress. The decrease was the same with photochemical efficiency. Photosynthetic intensity decreased by 13.3% from 1.5X10(4) mumol m(-2)s(-1) CO2 in control to 1.3x10(4) mumol m(2)s(-1) CO2 in the treatment of 3.2 mg L-1. Because Canna species are used in heavy metal phytoremediation, these results show that C. indica can tolerate 0.4 to 0.8 mg L-1 Cd2+. Therefore, it is a potential species for phytoremediation of cadmium with some limitations only at higher concentrations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Processing networks are a variant of the standard linear programming network model which are especially useful for optimizing industrial energy/environment systems. Modelling advantages include an intuitive diagrammatic representation and the ability to incorporate all forms of energy and pollutants in a single integrated linear network model. Added advantages include increased speed of solution and algorithms supporting formulation. The paper explores their use in modelling the energy and pollution control systems in large industrial plants. The pollution control options in an ethylene production plant are analyzed as an example. PROFLOW, a computer tool for the formulation, analysis, and solution of processing network models, is introduced.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Algae have been part of Chinese life for thousands of years. They are widely used as food and have been cited in Chinese literature as early as 2500 years ago. However, formal taxonomic studies on Chinese algae were initiated by foreign scientists only about 200 years ago, and by Chinese phycologists only about 90 years ago. This paper summarizes the history of modern phycological studies on Chinese algae and provides an overview of the achievements of phycological studies by Chinese scientists, especially on algal taxonomy, morphology, genetics, ecology and environmental research, physiology, biotechnology, algal culture, applied phycology and space phycology, in the last century. Recent development in phycological research focuses on algal floristic and molecular systematics, algal molecular biotechnology, applied phycology including micro and macroalgal cultivation and algal product development, and the roles of algae in environmental pollution control. These areas will also be the main focuses of Chinese phycological research in the foreseeable future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An assessment of metal contamination in surface sediments of the Jiaozhou Bay, Qingdao, one of the rapidly developing coastal economic zones in China, is provided. Sediments were collected from 10 stations and a total of 15 heavy metals were analyzed. Concentrations of metals show significant variability and range from 210 to 620 ppm for Ti, 2.7 to 23 ppm for Ni, 4.2 to 28 ppm for Cu, 5.2 to 18 ppm for Pb, 12 to 58 ppm for Zn, 0.03 to 0.11 ppm for Cd, 5 to 51 ppm for Cr, 1.5 to 9.9 ppm for Co, 5.3 to 19 ppm for As, 12 to 32 ppm for Se, and 19 to 97 ppm for Sr. Based on concentration relationships and enrichment factor (EF) analyses, the results indicate that sediment grain size and organic matter played important roles in controlling the distribution of the heavy metals in surface sediments of the Jiaozhou Bay. The study shows that the sediment of the Jiaozhou Bay has been contaminated by heavy metals to various degrees, with prominent arsenic contributing the most to the contamination. The analysis suggests that the major sources of metal contamination in the Jiaozhou Bay are land-based anthropogenic ones, such as discharge of industrial waste water and municipal sewage and run-off. Notably, the elevated heavy metal concentrations of the Jiaozhou Bay sediments could have a significant impact on the bay's ecosystem. With the rapid economic development and urbanization around the Jiaozhou Bay, coastal management and pollution control should focus on these contaminant sources, as well as provide ongoing monitoring studies of heavy metal contamination within the bay.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding relationship between environmental protection and economic development is crucial to form practical environmental policy. At micro level, implementation of environmental regulations often causes production mills adjustment of technology which might leads to change of productive efficiency and cost, which, in turn, determine effort level of mills and even local government in pollution control. Using a stochastic frontier production model and a set of survey data on 126 paper mills from six provinces of China, we measure the technical efficiency changes and analyze the determinants of efficiency. in particular, we examine impact of environmental policy on paper mills' efficiency, using an indicator of environmental policy-the levy ratio of COD. We also estimate a simultaneous-equation model in which the levy rate and emission are jointly determined. The results indicate that there have been efficiency improvements during 1999-2003, when enforcement of environmental regulations have been tightened. The impacts, nevertheless, are different for different types of mills. We also find the levy ratio, which is influenced by both the local social and economic conditions and the characters of paper mills, such as scale, has strong impact on the abatement of the pollutant-COD. Additionally, paper mills' technical efficiency has positive effect on the reduction of the emission intensity of the pollutant-COD. These results lead a set of implications pertinent to policy improvement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mapping the spatial distribution of contaminants in soils is the basis of pollution evaluation and risk control. Interpolation methods are extensively applied in the mapping processes to estimate the heavy metal concentrations at unsampled sites. The performances of interpolation methods (inverse distance weighting, local polynomial, ordinary kriging and radial basis functions) were assessed and compared using the root mean square error for cross validation. The results indicated that all interpolation methods provided a high prediction accuracy of the mean concentration of soil heavy metals. However, the classic method based on percentages of polluted samples, gave a pollution area 23.54-41.92% larger than that estimated by interpolation methods. The difference in contaminated area estimation among the four methods reached 6.14%. According to the interpolation results, the spatial uncertainty of polluted areas was mainly located in three types of region: (a) the local maxima concentration region surrounded by low concentration (clean) sites, (b) the local minima concentration region surrounded with highly polluted samples; and (c) the boundaries of the contaminated areas. (C) 2010 Elsevier Ltd. All rights reserved.