31 resultados para Poliomyelitis vaccine
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Aeromonas hydrophila and Vibrio fluvialis are the causative agents of a serious haemorrhagic septicaemia that affects a wide range of freshwater fish in China. In order to develop a bivalent anti-A. hydrophila and anti-V. fluvialis formalin-killed vaccine to prevent this disease, an orthogonal array design (OAD) method was used to optimize the production conditions, using three factors, each having three levels. The effects of these factors and levels on the relative per cent survival for crucian carp were quantitatively evaluated by analysis of variance. The final optimized formulation was established. The data showed that inactivation temperature had a significant effect on the potency of vaccine, but formalin concentration did not. The bivalent vaccine could elicit a strong humoral response in crucian carp (Carassius auratus L.) against both A. hydrophila and V. fluvialis simultaneously, which peaked at 3 or 5 weeks respectively. Antibody titres remained high until week 12, the end of the experiment, after a single intraperitoneal injection. The verification experiment confirmed that an optimized preparation could provide protection for fish at least against A. hydrophila infection, and did perform better than the non-optimized vaccine judged by the antibody levels and protection rate, suggesting that OAD is of value in the development of improved vaccine formulations.
Resumo:
VhhP2 is an Outer membrane protein identified in a pathogenic Vibrio harveyi strain, T4, isolated from diseased fish. When used as a Subunit Vaccine, purified recombinant VhhP2 affords high level of protection upon Japanese flounder against V harveyi challenge. Vaccination with VhhP2 induced the expression of a number of immune-related genes, especially those encoding immunoglobulin M (IgM) and major histocompatibility complex (MHC) II alpha. A VhhP2 surface display system, in the form of the fish commensal strain FIR harboring the vhhP2-expressing plasmid pJVP, was constructed. PF3/pJVP is able to produce and present recombinant VhhP2 on cell surface. Vaccination of fish with live PF3/pJVP via intraperitoneal injection elicited Strong immunoprotection. Vaccination of fish orally with live PF3/pJVP embedded in alginate microspheres also induced effective immunoprotection. In addition, a VhhP2-based surface display system was created, in which VhhP2 serves as a carrier for the Surface delivery of a heterologous Edwardsiella tarda immunogen, Et18, that is fused in-frame to VhhP2. DH5 alpha/pJVP18, which expresses and surface-displays the VhhP2-Et18 chimera, proved to be an effective vaccine that call protect fish against infections by V. harveyi and E. tarda to the extents comparable to those produced by vaccination with purified recombinant VhhP2 and Et18, respectively. These data suggest that VhhP2 may be applied as a vaccine and a vaccine carrier against infections by V. harveyi and other pathogens such as F. tarda. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Ferric uptake regulator (Fur) is a global transcription regulator that is ubiquitous to Gram-negative bacteria and regulates diverse biological processes, including iron uptake, cellular metabolism, stress response, and production of virulence determinants. As a result, for many pathogenic bacteria, Fur plays a crucial role in the course of infection and disease development. In this study, the fur gene was cloned from a pathogenic Pseudomonas fluorescens strain, TSS, isolated from diseased Japanese flounder cultured in a local farm. TSS Fur can partially complement the defective phenotype of an Escherichia coli fur mutant. A TSS fur null mutant, TFM, was constructed. Compared to TSS, TFM exhibits reduced growth ability, aberrant production of outer membrane proteins, decreased resistance against host serum bactericidal activity, impaired ability to disseminate in host blood and tissues, and drastic attenuation in overall bacterial virulence in a Japanese flounder infection model. When used as a live vaccine administered via the injection, immersion, and oral routes, TFM affords high levels of protection upon Japanese flounder against not only P.fluorescens infection but also Aeromonas hydrophila infection. Furthermore, a plasmid, pJAQ, was constructed, which expresses the coding element of the Vibrio harveyi antigen AgaV-DegQ. TFM harboring pJAQ can secret AgaV-DegQ into the extracellular milieu. Vaccination of Japanese flounder with live TFM/pJAQ elicited strong immunoprotection against both V. harveyi and A. hydrophila infections. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The esrB gene of Edwardsiella tarda, which encodes a regulator protein of the type III secretion system, was mutated by the unmarked deletion method and reintroduced by allelic exchange into the chromosome of E. tarda LSE40 by means of the suicide vector pRE 112. The LSE40 esrB mutant was highly attenuated when inoculated intraperitoneally into turbot Scophthamus maximus L., showing a 50% lethal dose of 10(8.1) cfu/fish. The esrB mutants were not recoverable from the internal organs at 14 days post-inoculation. Vaccination with a single dose of 10(5)-10(7) cfu/fish of the esrB mutant elicited significant protection against the wildtype strain of E. tarda LSE40 (relative percentage survival > 50%). The protection correlated well with the antibody titres in the serum of vaccinated fish. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Edwardsiella tarda is the etiological agent of edwardsiellosis, a systematic disease that affects a wide range of marine and freshwater fish cultured worldwide. In order to identify E. tarda antigens with vaccine potential, we in this study conducted a systematic search for E. tarda proteins with secretion capacity. One of the proteins thus identified was Esa1, which contains 795 amino acid residues and shares extensive overall sequence identities with the D15-like surface antigens of several bacterial species. In silico analyses indicated that Esa1 localizes to outer membrane and possesses domain structures that are conserved among bacterial surface antigens. The vaccine potential of purified recombinant Esa1 was examined in a Japanese flounder (Paralichthys olivaceus) model, which showed that fish vaccinated with Esa1 exhibited a high level of survival and produced specific serum antibodies. Passive immunization of naive fish with antisera raised against Esa1 resulted in significant protection against E. tarda challenge. Taking advantage of the secretion capacity of Esa1 and the natural gut-colonization ability of a fish commensal strain, we constructed an Esa1-expressing recombinant strain, FP3/pJsa1. Western immunoblot and agglutination analyses showed that FP3/pJsa1 produces outer membrane-localized Esa1 and forms aggregates in the presence of anti-Esa1 antibodies. Vaccination analyses showed that FP3/pJsa1 as an intraperitoneal injection vaccine and an oral vaccine embedded in alginate microspheres produced relative percent survival rates of 79% and 52%, respectively, under severe challenging conditions that resulted in 92-96% mortality in control fish. Further analyses showed that following oral vaccination, FP3/pJsa1 was able to colonize in the gut but unable to disseminate into other tissues. Together these results indicate that Esa1 is a protective immunogen and an effective oral vaccine when delivered by FP3/pJsa1 as a surface-anchored antigen. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Edwardsiella tarda is an important aquaculture pathogen that can infect a wide range of marine and freshwater fish worldwide. In this study, a modified E. tarda strain, TX5RM, was selected by multiple passages of the pathogenic E. tarda strain TX5 on growth medium containing the antibiotic rifampicin. Compared to the wild type strain, the rifampicin-resistant mutant TX5RM (i) shows drastically increased median lethal dose and reduced capacity to disseminate in and colonize fish tissues and blood; (ii) exhibits slower growth rates when cultured in rich medium or under conditions of iron depletion; and (iii) differs in the production profile of whole-cell proteins. The immunoprotective potential of TX5RM was examined in a Japanese flounder (Paralichthys olivaceus) model as a vaccine delivered via intraperitoneal injection, oral feeding, bath immersion, and oral feeding plus immersion. All the vaccination trials, except those of injection, were performed with a booster at 3-week after the first vaccination. The results showed that TX5RM administered via all four approaches produced significant protection, with the highest protection levels observed with TX5RM administered via oral feeding plus immersion, which were, in terms of relative percent of survival (RPS), 80.6% and 69.4% at 5- and 8-week post-vaccination, respectively. Comparable levels of specific serum antibody production were induced by TX5RM-vaccinated via different routes. Microbiological analyses showed that TX5RM was recovered from the gut, liver, and spleen of the fish at 1-10 days post-oral vaccination and from the spleen, liver, kidney, and blood of the fish at 1-14 days post-immersion vaccination. Taken together, these results indicate that TX5RM is an attenuated E. tarda strain with good vaccine potential and that a combination of oral and immersion vaccinations may be a good choice for the administration of live attenuated vaccines. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs in certain contexts are known to be immunostimulatory in vertebrate systems. CpG ODNs with immune effects have been identified for many fish species but, to our knowledge, not for turbot. In this study, a turbot-effective CpG ODN, ODN 205, was identified and a plasmid, pCN5, was constructed which contains the CpG motif of ODN 205. When administered into turbot via intraperitoneal (i.p.) injection, both ODN 205 and pCN5 could (i) inhibit bacterial dissemination in blood in dose and time dependent manners, and (ii) protect against lethal bacterial challenge. Immunological analyses showed that in vitro treatment with ODN 205 stimulated peripheral blood leukocyte proliferation, while i.p. injection with ODN 205 enhanced the respiratory burst activity, chemiluminescence response, and acid phosphatase activity of turbot head kidney macrophages. pCN5 treatment-induced immune responses similar to those induced by ODN 205 treatment except that pCN5 could also enhance serum bactericidal activity in a calcium-independent manner. To examine whether ODN 205 and pCN5 had any effect on specific immunity, ODN 205 and pCN5 were co-administered into turbot with a Vibrio harveyi subunit vaccine, DegQ. The results showed that pCN5, but not ODN 205, significantly increased the immunoprotective efficacy of DegQ and enhanced the production of specific serum antibodies in the vaccinated fish. Further analysis indicated that vaccination with DegQ in the presence of pCN5 upregulated the expression of the genes encoding MHC class II alpha, IgM, Mx, and IL-8 receptor. Taken together, these results demonstrate that ODN 205 and pCN5 can stimulate the immune system of turbot and induce protection against bacterial challenge. In addition, pCN5 also possesses adjuvant property and can potentiate vaccine-induced specific immunity. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Streptococcus iniae is a severe aquaculture pathogen that can also infect humans and animal. A putative secretory antigen, Slat 0, was identified from a pathogenic S. iniae strain by in vivo-induced antigen technology. Using turbot as an animal model, the immunoprotective effect of Sia10 was examined as a DNA vaccine in the form of plasmid pSia10, which expresses sia10 under the cytomegalovirus immediate-early promoter. In fish vaccinated with pSia10, transcription of sia10 was detected in muscle, liver, spleen, and kidney at 7, 14, 21, 28, 35, 42, and 49 days post-vaccination. In addition, production of Sia10 protein was also detected in the muscle tissues of pSia10-vaccinated fish. Fish vaccinated with pSia10 exhibited a relative percent survival (RPS) of 73.9% and 92.3%, respectively, when challenged with high and low doses (producing a cumulative mortality of 92% and 52%, respectively, in the control groups) of S. iniae. Immunological and transcriptional analyses showed that vaccination with pSia10(i) induced much stronger chemiluminescence response and significantly higher levels of nitric oxide production and acid phosphatase activity in head kidney macrophages; (ii) caused the production of specific serum antibodies, which afforded apparent immunoprotection when transferred passively into naive fish; and (iii) upregulated the expression of the genes encoding proteins that are possibly involved in both innate and adaptive immune responses. Taken together, these results indicated that pSia10 is an effective vaccine candidate and may be used in the control of S. iniae infection in aquaculture. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Horseflies are economically important blood-feeding arthropods and also a nuisance for humans and vectors for filariasis. They rely heavily on the pharmacological properties of their saliva to get a blood meal and suppress immune reactions of hosts. Little information is available on antihemostatic substances in horsefly salivary glands; especially no horsefly immune suppressants have been reported. By proteomics or peptidomics and coupling transcriptome analysis with pharmacological testing, several families of proteins or peptides, which act mainly on the hemostatic system or immune system of the host, were identified and characterized from 30,000 pairs salivary glands of the horsefly Tabanus yao (Diptera, Tabanidae). They are: (i) a novel family of inhibitors of platelet aggregation including two members, which possibly inhibit platelet aggregation by a novel mechanism and act on platelet membrane, (ii) a novel family of immunosuppressant peptides including 12 members, which can inhibit interferon-gamma production and increase interleukin-10 secretion, (iii) a serine protease inhibitor with 56 amino acid residues containing anticoagulant activity, (iv) a serine protease with anticoagulant activity, (v) a protease with fibrinogenolytic activity, (vi) three families of antimicrobial peptides including six members, (vii) a hyaluronidase, (viii) a vasodilator peptide, which is an isoform of vasotab identified from Hybomitra bimaculata, and interestingly (ix) two metallothioneins, which are the first metallothioneins reported from invertebrate salivary glands. The current work will facilitate the understanding of the molecular mechanisms of the ectoparasite-host relationship and help in identifying novel vaccine targets and novel leading pharmacological compounds.
Resumo:
The hemizona assay (HZA) in Rhesus monkeys was employed to study the correlation of zona-binding ability with sperm motility or with naturally developing oocytes at various maturational stages. Oocytes from unstimulated ovaries were retrieved within 2 hr from monkeys sacrificed for vaccine production (in reproductive season, but with their menstrual cycles not determined). Oocytes were divided into four groups based on their morphological maturation: 1) Oocytes surrounded by more than one cumulus layer (MC); 2) Oocytes retaining intact germinal vesicle nuclei (GV); 3) Oocytes with germinal vesicle breakdown showing distinct perivitelline space (PVS); and 4) Oocytes extruding the first polar body (PB1). The mean numbers of sperm bound to hemizona for PBI, PVS, GV, and MC groups were 132.9 +/- 12.0, 71.5 +/- 10.1, 36.1 +/- 4.0, and 20.1 +/- 2.9 (Mean +/- SE), respectively. The four groups showed significant differences from each other in sperm/egg binding ability (P < 0.01). The number of bound sperm significantly increased with oocyte maturation. The present study also showed that zona-binding ability was also affected by sperm motility. For sperm with 67.7% motility and sperm with 31.2% motility, the average numbers of bound sperm were 43.5 +/- 2.2 and 25.3 +/- 2.9 (Mean +/- SE), respectively. There was significantly higher binding ability for sperm with higher motility (P < 0.01). The results suggest that: 1)The rhesus monkey model can serve as a very sensitive model for studying sperm/egg interaction by HZA; 2) Sperm motility positively correlated with sperm/egg binding; and 3) Sperm/egg binding ability increases with oocyte maturation. The binding ability is highest when oocytes matured to the PB1 stage, which is also the best opportunity for fertilization. This is strong evidence for the ''zona maturation'' hypothesis. (C) 1994 Wiley-Liss, Inc.
Resumo:
Background: The anti-HIV-1 neutralizing antibody assay is widely used in AIDS vaccine research and other experimental and clinical studies. The vital dye staining method applied in the detection of anti-HIV-1 neutralizing antibody has been used in many laboratories. However, the unknown factor(s) in sera or plasma affected cell growth and caused protection when the tested sera or plasma was continuously maintained in cell culture. In addition, the poor solubility of neutral red in medium (such as RPMI-1640) also limited the use of this assay. Methods: In this study, human T cell line C8166 was used as host cells, and 3-(4,5-Dimethyl-2-thiazolyl)- 2,5-diphenyl-2H-tetrazolium bromide (MTT) instead of neutral red was used as vital dye. In order to avoid the effect of the unknown factor( s), the tested sera or plasma was removed by a washout procedure after initial 3 - 6 h culture in the assay. Result: This new assay eliminated the effect of the tested sera or plasma on cell growth, improved the reliability of detection of anti-HIV-1 neutralizing antibody, and showed excellent agreement with the p24 antigen method. Conclusion: The results suggest that the improved assay is relatively simple, highly duplicable, cost-effective, and well reliable for evaluating anti-HIV-1 neutralizing antibodies from sera or plasma.
Resumo:
Three different kinds of viruses, the spherical virus SCSV with a diameter of about 280 nm, the rhabdovirus SCRV with a size about 250 x 120 nm, and the baculovirus SCBV with a size about 200 x 100 nm, were observed from the tissues of diseased mandarin fish Siniperca chuatsi with outbreak of infection and acute lethality. This phenomenon implicated that the reason why the epizootic disease of mandarin fish could not be quenched by only one kind of virus vaccine can be explained by the fact that the fish may be infected by different kinds of viruses. Therefore, more attention should be paid to the complexity of virus pathogens in the prevention strategy for mandarin fish diseases.