4 resultados para Plaque occlusale

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

细胞黏附在机体的生理和病理过程中起着重要的作用。作为细胞内、外信息交流和传递的通道,细胞黏附斑具有独特的力敏感性。实验表明,在力的作用下,黏附斑不仅可以生长、成熟和破坏,而且还能感知外部环境的力学性质,如基底硬度、硬度梯度和形貌等等。细胞黏附如何响应不同的力学刺激,物理机理是什么,如何定量描述这些物理机理?这些问题是细胞生物学和细胞力学中的重要问题。本论文通过在分子和亚细胞尺度上的力学建模研究了黏附斑的力敏感性机理,主要包括以下几方面的内容: (1) 发展了一个非线性的撕裂模型,研究了细胞黏附的稳定性和边缘依赖性。通过引入黏附分子键的非线性本构关系,并考虑黏附分子键的多种分布形式,我们发现黏附分子键的非线性效应对维持细胞黏附的稳定性起着至关重要的作用。黏附分子键的非线性力学性质使黏附分子键可以同时承载,降低了细胞对黏附分子键分布的依赖性,大大提高了细胞的黏附强度。本文的预测结果与实验结果一致。 (2) 建立了细胞黏附的细观力学模型,研究了在力作用下黏附斑生长和失稳的分子机理。在细观力学模型中,引入了“整联蛋白的聚集”和“整联蛋白-配体的反应”两个分子作用机理,并用两个化学反应来描述。通过基于Monte Carlo思想的Gillespie算法模拟了细胞黏附在不同载荷下的响应。我们发现黏附斑只能在一定范围的张力下生长,在这个范围内整联蛋白的聚集机制占主导。而当张力大于某个临界值时,黏附斑将失稳并导致破坏,这时整联蛋白-配体分子键的解离机制占主导。因此,黏附斑对作用力的不同响应,是不同分子作用机制在力作用下相互消长的结果。同时我们还建立了一个唯象的热力学模型中,验证了我们的细观力学模型。 (3) 基于细胞黏附的细观力学模型,研究了周期性载荷下细胞的重排和转向机理。在细观力学模型中,通过黏附块(adhesion plaque),将整联蛋白-配体分子键和细胞骨架联系起来。基于Monte Calro模拟,我们发现存在一个载荷临界值,当外载大于临界值时,细胞将进行重排。细胞重排的原因是在周期性载荷下黏附斑的失稳。通过引入整联蛋白-配体成键的化学反应动力学和应力纤维的粘弹性性质,解释了细胞黏附稳定性的频率依赖性。本文预测的细胞转向临界载荷和重排方向,与实验结果一致。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Halophage SNJ1 was induced with mitomycin C from Natrinema sp. strain F5. The phage produces plaques on Natrinema sp. strain J7 only. The phage has a head of about 67 nm in diameter and a tail of 570 nm in length and belongs morphologically to the family Siphoviridae. The phage is strongly salt dependent; NaCl concentration affects the integrity of SNJ1, phage adsorption, and plaque formation. The optimal NaCl concentration for phage adsorption and plaque formation is 30% and 25%, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An unknown virus was isolated from massive mortality of cultured threadfin (Eleutheronema tetradactylus) fingerlings. The virus replicated in BF-2 fish cell line and produced a plaque-like cytopathic effect. Electron micrographs revealed non-enveloped, icosahedral particles approximately 70-80 nm in diameter composed of a double capsid layer. Viroplasms and subviral particles approximately 30 run in diameter and complete particles of 70 nm in diameter were also observed in the infected BF-2 tissue culture cells. The virus was resistant upon pH 3 to 11 and ether treatment. It is also stable to heat treatment (3 h at 56 T). Replication was not inhibited by 5-iododeoxyuridine (5-IUdR). Acridine orange stain revealed typical reovirus-like cytoplasmic inclusion bodies. Electrophoresis of purified virus revealed 11 segments of double-stranded RNA and five major structural polypeptides of approximately 136, 132, 71, 41 and 33 kDa. Based on these findings, the virus isolated was identified to belong to the genus Aquareovirus and was designated as threadfin reovirus. This virus differed from a majority of other aquareovirus by its increase in virus infectivity upon exposure to various treatments such as high and low pH, heat (56 degreesC), ether and 5-IUdR. The RNA and virion protein banding pattern of the threadfin reovirus was shown to differ from another Asian isolate, the grass carp hemorrhage reovirus (GCV). Artificial injection of the threadfin reovirus into threadfin fingerlings resulted in complete mortality, whereas sea bass (Lates calcarifer) fingerlings infected via bath route showed severe mortality within a week after exposure. These results indicate that the threadfin virus is another pathogenic Asian aquareovirus isolate that could cross-infect into another marine fish, the sea bass. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two biological aerated filters (BAF) were setup for ammonia removal treatment of the circulation water in a marine aquaculture. One of the BAFs was bioaugmented with a heterotrophic nitrifying bacterium, Lutimonas sp. H10, where the ammonia removal was not improved and the massive inoculation was even followed by a nitrification breakdown from day 9 to 18. The nitrification was remained stable in control BAF operated under the same conditions. Fluorescent in situ hybridization (FISH) with rRNA-targeted probes and cultivable method revealed that Lutimonas sp. H10 almost disappeared from the bioaugomented BAF within 3 d, and this was mainly due to the infection of a specific phage as revealed by flask experiment, plaque assay and transmission electron observation. Analyses of 16S rRNA gene libraries showed that bacterial groups from two reactors evolved differently and an overgrowth of protozoa was observed in the bioaugmented BAR Therefore, phage infection and poor biofilm forming ability of the inoculated strain are the main reasons for bioaugmentation failure. In addition, gazing by protozoa of the bacteria might be the reason for the nitrification breakdown in bioaugmented BAF during day 9-18.