19 resultados para Plants - Nitrogen metabolism

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Submersed macrophytes in eutrophic lakes often experience high NH4+ concentration and low light availability in the water column. This study found that an NH4+-N concentration of 1 mgL(-1) in the water column apparently caused physiological stress on the macrophyte Potamogeton crispus; L The plants accumulated free amino acids (FAA) and lost soluble carbohydrates (SC) under NH4+ stress. These stressful effects of NH4+ were exacerbated under low light availability. Shading significantly increased NH4+ and FAA contents and dramatically decreased SC and starch contents in the plant shoots. At an NH4+-N concentration of 1 mg L-1 in the water column, neither growth inhibition nor NH4+ accumulation was observed in the plant tissues of P. crispus under normal light availability. The results showed that 1 mg L-1 NH4+-N in the water column was not toxic to P. crispus in a short term. To avoid NH4+ toxicity. active NH4+ transportation out of the cell may cost energy and thus result in a decline of carbohydrate. When NH4+ inescapably accumulates in the plant cell, i.e. under NH4+ Stress and shading, NH4+ is scavenged by FAA synthesis. (c) 2009 Published by Elsevier B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

沙棘广泛分布于亚欧大陆的温带地区和亚洲亚热带的高海拔地区。沙棘能适应多种生态环境,能耐受多种逆境(如干旱、低温、高温和盐害等)。在中国,沙棘常常被用作植被恢复中的先锋树种而大量栽培。本文以中国沙棘为试验材料,探索沙棘适应干旱机制,以及沙棘对干旱胁迫的适应机制是否存在种群间的差异,同时试图通过分析干旱胁迫下沙棘叶片蛋白质表达变化探索沙棘适应干旱胁迫的分子机理。 对三个分别来自低海拔湿润地区、低海拔干旱地区和高海拔湿润地区的中国沙棘种群进行干旱胁迫处理。干旱胁迫能提高根冠比,比叶面积,降低平均叶面积和总生物量,提高沙棘的抗氧化性酶活性、脯氨酸含量、脱落酸(ABA)含量、降低光合作用,提高长期用水效率。实验中的这两个低海拔种群比高海拔种群抵抗干旱的能力更强,不同的种群采用了不同的策略来耐受干旱胁迫和过氧化胁迫。 在2004 年度的实验中,干旱胁迫处理下,高海拔湿润种群(道孚种群)严重失水,生长也受到更大的抑制,非气孔因素在抑制光合作用方面占支配地位,抗坏血酸含量下降,ABA和脯氨酸含量增加幅度比九寨沟种群的要高,这可能是因为道孚种群严重失水而引起的;而低海拔湿润种群(九寨沟种群)的体内水分状况几乎不受干旱的影响,生长情况也较道孚种群要好。 在2005 年度的试验中,和高海拔湿润地区种群(道孚)相比较,低海拔干旱地区种群(定西)在叶片相对水含量、根冠比、抗氧化酶活性(过氧化氢酶、抗坏血酸过氧化物酶和谷胱甘肽过氧化物酶)、保护性物质(脯氨酸,脱落酸)含量等方面都要高,光能热耗散能力也更强,而且气体交换参数(气孔扩散阻力和胞间CO2浓度等)对干旱也更不敏感。 分析了干旱胁迫下沙棘叶片蛋白质表达的变化。共发现319 个蛋白质,有4 个蛋白在干旱胁迫下消失(Putative ABCtransporter ATP-binding protein 、Hypothetical proteinXP-515578,热激蛋白Hslu219 和一个没得到鉴定的蛋白),4 个只在干旱胁迫下出现(没命名的蛋白质产物,对甲基苯-丙酮酸双加氧酶,NTrX 和一个没得到鉴定的蛋白),46 个蛋白质的表达丰度变化显著,包括32 个干旱负调蛋白,14 个干旱正调蛋白(3 个Rubisco 的大亚基、J-type–co-chaperone Hsc20、putative protein DSM3645-2335、putative acyl-COA 脱氢酶、nesprin-2 和两个没有得到鉴定的蛋白质)。这些蛋白质参与了氮代谢调控、抗氧化行物质的合成、脂肪酸β-氧化、核骨架构造、[Fe-S]基团组装、物质跨膜运输、细胞分裂或作为分子伴侣和蛋白质酶起作用。putative ABC transporter ATP-binging protein、NtrX、nesprin-2 和Hslu 是本试验新发现的高等植物蛋白,我们主要从它们的保守结构域或在其他生物中的同源物来猜测它们的功能。实验结果为我们研究植物抗干旱机制提供了新线索和新视野。 Seabuckthorn (Hippophae rhamnoides L.) is widly distributed throughtout the temperatureresiogn of Europe and Asia and sub-tropical plateau zone of Asia. H. rhamnoides can adapatseveral different environments, and can tolerant several envioronmental stresses (e.g, lowtemperature, high temperature, drought and salty). It has been widely used in forest restoration asthe pioneer species in China. In present study, we applied H.rhamnoides subsp. Sinensis asexperimental materials to study its drought-tolerant mechanism, and expected to findpopulational difference in drought-tolerant mechanism that may exist among populations, and tryto get some insight in drought-tolerant mechanism of it at morecular level through analyzing thechange of leaf protein expression. Three populations from high altitude wet zone, low altitude wet zone and low altitude arid znoe,respectively, were applied in our experiment, and were subjected to drought. Drought increasedthe root/shoot ratio(RS), special leaf area, long-term water use efficinency, activity of antioxidantenzymes, proline content and abscisic acid (ABA) content, declined the net photosynthesis rate(A), average leaf area (ALA), total biomass (TB). Both two low altitude populations were moredrought-tolerant than the high altitude population, and different population applied differentstratedgies to tolerant oxidant stress and drought stress. The results of the exprement in 2004 showed that Daofu population was more drought-sensitivethan Jiuzhai population. Under drought conditions, leaf relative water content (RWC) greatlydecreased in Daofu population, but not in Jiuzhai population. The large loss of water in Daofupopulation resulted in a limitation on A mainly caused by non-stomatal factors, severer suppression in growth rate and a significant reduction in ascorbic acid (AsA) content, comparedwith Jiuzhai population. The greater increase in content of ABA and proline in Daofu populationmay be also induced by large loss in water, so that enable plants to cope with sever drought. In the exprement of 2005, drought significantly increased RS, activities of catalase (CAT),peroxidase (POD), glutathione peroxidase (GPX) and ascorbate peroxidase (APX), and alsosignificantly increased ABA and proline contents. On the other hand, compared with Daofupopulation, drought induced larger RS and activities of CAT, GPX and APX, and higher ABAcontent in Dingxi population, whereas gas exchange traits, e.g., stomatal limitation value (LS) andintercellular CO2 concentration (Ci), were less responsive to drought in Dingxi population thanthose in Daofu population. All these factors enable Dingxi population to tolerant drought betterthan Daofu population. The leaf protein profile of seabuchthorn subjected to drought was analyzed. Altogether 319proteins were detected in well-watered sample, four proteins disappeard by drought (putativeABCtransporter ATP-binding protein, hypothetical protein XP-515578, Hslu219and aunidentified protein), four only appeared under drought (a probable nitrogen regulation protein(NtrX), a 4-hydroxyphenylpyruvate dioxygenase , an unnamed protein product and an identified protein), 32 drought down-regulated proteins, and 14 drought up-regulated proteins (nine wereidentified: three large subunits of Rubisco, a hypothetical protein DSM3645-23351, a putativeacyl-COA dehydrogenase, a nesprin-2, a J-type-co-chaperone HSC20 and two unmatchedproteins). These proteins may involve in β-oxidation, cross-membrane transport, cell division,cytoskeleton stabilization, iron-sulfur cluster assembly, nitrogen metabolism regulation andantioxidant substance biosynthesis or function as molecular chaperone or protease. Four proteins(a putative ABC transporter ATP-binging protein, NtrX, nesprin-2, Hslu) were new found in highplants, and their functions were estimated from their conserved domain or their homologues inother organism. Our results provided new clue and new insight for us to study thedrought-tolerant mechanism in plants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To study the impact of solar UV radiation (UVR) (280 to 400 nm) on the filamentous cyanobacterium Arthrospira (Spirulina) platensis, we examined the morphological changes and photosynthetic performance using an indoor-grown strain (which had not been exposed to sunlight for decades) and an outdoor-grown strain (which had been grown under sunlight for decades) while they were cultured with three solar radiation treatments: PAB (photosynthetically active radiation [PAR] plus UVR; 280 to 700 nm), PA (PAR plus UV-A; 320 to 700 nm), and P (PAR only; 400 to 700 nm). Solar UVR broke the spiral filaments of A. platensis exposed to full solar radiation in short-term low-cell-density cultures. This breakage was observed after 2 h for the indoor strain but after 4 to 6 h for the outdoor strain. Filament breakage also occurred in the cultures exposed to PAR alone; however, the extent of breakage was less than that observed for filaments exposed to full solar radiation. The spiral filaments broke and compressed when high-cell-density cultures were exposed to full solar radiation during long-term experiments. When UV-B was screened off, the filaments initially broke, but they elongated and became loosely arranged later (i.e., there were fewer spirals per unit of filament length). When UVR was filtered out, the spiral structure hardly broke or became looser. Photosynthetic 0, evolution in the presence of UVR was significantly suppressed in the indoor strain compared to the outdoor strain. UVR-induced inhibition increased with exposure time, and it was significantly lower in the outdoor strain. The concentration of UV-absorbing compounds was low in both strains, and there was no significant change in the amount regardless of the radiation treatment, suggesting that these compounds were not effectively used as protection against solar UVR. Self-shading, on the other hand, produced by compression of the spirals over adaptive time scales, seems to play an important role in protecting this species against deleterious UVR. Our findings suggest that the increase in UV-B irradiance due to ozone depletion not only might affect photosynthesis but also might alter the morphological development of filamentous cyanobacteria during acclimation or over adaptive time scales.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Growth, nitrogen and carbohydrate metabolism in relation to eutrophication were studied for a submerged plant Potamogeton maackianus, a species common in East Asian shallow lakes. The plants were grown in six NH4+-N concentrations (0.05, 0.50, 1.00, 3.50, 5.00 and 10.00 mg/L) for six days. NH4+-N levels in excess of 0.50 mg/L inhibited the plant growth. The relationships between external NH4+-N availability and total nitrogen (TN), protein-N, free amino acid-N (FAA-N) and NH4+-N in plant tissues, respectively, conformed to a logarithmic model suggesting that a feedback inhibition mechanism may exist for ammonium uptake. The response of starch to NH4+-N was fitted with a negative, logarithmic curve. Detailed analysis revealed that the influx NH4+-N had been efficiently incorporated into organic-N and eventually stored as protein at the expense of starch accumulation. These data suggest that this species may be able to tolerate high levels of ammonium when dissolved oxygen is sufficient.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stable nitrogen isotope signatures of major sources of mineral nitrogen ( mineralization of soil organic nitrogen, biological N-2 fixation by legumes, annual precipitation and plant litter decomposition) were measured to relatively define their individual contribution to grass assimilation at the Haibei Alpine Meadow Ecosystem, Qinghai, China. The results indicated that delta N-15 values (- 2.40 parts per thousand to 0.97 parts per thousand) of all grasses were much lower than those of soil organic matter (3.4 +/- 0.18 parts per thousand) and mineral nitrogen ( ammonium and nitrate together,7.8 +/- 0.57 parts per thousand). Based on the patterns of stable nitrogen isotopes, soil organic matter (3.4 +/- 0.18 parts per thousand), biological N-2 fixation (0 parts per thousand), and precipitation (- 6.34 +/- 0.24 parts per thousand) only contributed to a small fraction of nitrogen requirements of grasses, but plant litter decomposition (- 1.31 +/- 1.01 parts per thousand) accounted for 67%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Large-scale grassland rehabilitation has been carried out on the severely degraded lands of the Tibetan plateau. The grasslands created provide a useful model for evaluating the recovery of ecosystem properties. The purposes of this research were: (1) to examine the relative influence of various rehabilitation practices on carbon and nitrogen in plants and soils in early secondary succession; and (2) to evaluate the degree to which severely degraded grassland altered plant and soil properties relative to the non-disturbed native community. The results showed: (1) The aboveground tissue C and N content in the control were 105-97 g m(-2) and 3.356gm(-2), respectively. The aboveground tissue C content in the mixed seed treatment, the single seed treatment, the natural recovery treatment and the severely degraded treatment was 137 per cent, 98 per cent, 49 per cent and 38 per cent, respectively, of that in the control. The corresponding aboveground tissue N content was 109 per cent, 84 per cent, 60 per cent and 47 per cent, respectively, of that in the control. (2) Root C and N content in 0-20 cm depths of the control had an 2 2 average 1606 gm(-2) and 30-36 gm(-2) respectively. Root C and N content in the rehabilitation treatments were in the range of 26-36 per cent and 35-53 per cent, while those in the severely degraded treatment were only 17 per cent and 26 per cent of that in the control. (3) In the control the average soil C and N content at 0-20 cm was 11307 gm(-2) and 846 gm(-2), respectively. Soil C content in the uppermost 20 cm in the seeded treatments, the natural recovery treatment and the severely degraded treatment was 67 per cent, 73 per cent and 57 per cent, respectively, while soil N content in the uppermost 20cm was 72 per cent, 82 per cent and 79 per cent, respectively, of that in the control. The severely degraded land was a major C source. Restoring the severely degraded lands to perennial vegetation was an alternative approach to sequestering C in former degraded systems. N was a limiting factor in seeding grassland. It is necessary for sustainable utilization of seeding grassland to supply extra N fertilizer to the soil or to add legume species into the seed mix. Copyright (c) 2005 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A limnological study was carried out to determine the responses of superoxide dismutase (SOD) activities and soluble protein (SP) contents of 11 common aquatic plants to eutrophication stress. Field investigation in 12 lakes in the middle and lower reaches of the Yangtze River was carried out from March to September 2004. Our results indicated that non-submersed (emergent and floating-leafed) plants and submersed plants showed different responses to eutrophication stress. Both SOD activities of the non-submersed and submersed plants were negatively correlated with their SP contents (P < 0.000 1). SP contents of non-submersed plants were significantly correlated with all nitrogen variables in the water (P < 0.05), whereas SP contents of submersed plants were only significantly correlated with carbon variables as well as ammonium and Secchi depth (SD) in water (P < 0.05). Only SOD activities of submersed plants were decreased with decline of SD in water (P < 0.001). Our results indicate that the decline of SOD activities of submersed plants were mainly caused by light limitation, this showed a coincidence with the decline of macrophytes in eutrophic lakes, which might imply that the antioxidant system of the submersed plants were impaired under eutrophication stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to examine how carbon and nitrogen status of a macrophyte may affect its total phenolics (TP) production, the contents of free amino acids (FAA), soluble carbohydrate (SC) and TP were examined in leaves of seven submersed, four floating-leaved, and four emergent macrophytes. The floating-leaved and emergent macrophytes had much higher contents of SC and TP than the submersed macrophytes. The contents of FAA were not significantly different among the submersed, floating-leaved, and emergent macrophytes. Correlations among the contents of FAA, SC, and TP indicated that the production of TP was more dependent on the SC content than on the FAA content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

株高是农作物的重要农艺性状之一,适度矮化有利于农作物的耐肥、抗倒、高产等。20世纪50年代,以日本的赤小麦为矮源的半矮秆小麦的培育和推广,使得世界粮食产量显著增长,被誉为“绿色革命”。迄今为止,已报到的麦类矮秆、半矮秆基因已达70多个,但由于某些矮源极度矮化或者矮化的同时伴随不利的农艺性状,使得真正运用于育种实践的矮源较少。因此,发掘和鉴定新的控制麦类作物株高的基因,开展株高基因定位、克隆及作用机理等方面的研究,对实现麦类作物株高的定向改良,具有重要的理论意义和应用价值。簇毛麦(Dasypyrum villosum,2n=14,VV)是禾本科簇毛麦属一年生二倍体异花授粉植物,为栽培小麦的近缘属。本课题组在不同来源的簇毛麦杂交后代中发现了一株自然突变产生的矮秆突变体。观察分析了该突变体的生物学特性,对矮秆性状进行了遗传分析,对茎节细胞长度、花粉的活力进行了细胞学观察,考察了该突变体内源赤霉素含量及不同浓度外施赤霉素对突变体的作用,分析了赤霉素生物合成途径中的内根贝壳杉烯氧化酶(KO)和赤霉素20氧化酶(GA20ox)的转录水平,对赤霉素20氧化酶和赤霉素3-β羟化酶(GA3ox)进行了克隆和序列分析,并对GA20ox进行了原核表达和表达的组织特异性研究。主要研究结果如下:1. 该突变体与对照植株在苗期无差异,在拔节后期才表现出植株矮小,相对对照植株,节间伸长明显受到抑制,叶鞘长度基本不变。在成熟期,对照植株的平均株高为110cm,而突变株的平均株高为32cm,仅为对照植株的1/3 左右。除了株高变矮以外,在成熟后期,突变株还表现一定程度的早衰和雄性不育。I2-KI染色法观察花粉活力结果表明,对照植株花粉90%以上都是有活力的,而突变植株的花粉仅20%左右有活力。2. 突变株与对照植株的杂交F1代均表现正常株高,表明该突变性状为隐性突变。F1代植株相互授粉得到的168株F2代植株中,株高出现分离,正常株高(株高高于80cm)与矮秆植株(株高矮于40cm)的株数比为130:38,经卡方检验,其分离比符合3:1的分离比,因此推测该突变体属于单基因的隐性突变。3. 用ELISA方法检测突变株和对照植株的幼嫩种子中内源性生物活性赤霉素(GA1+3)含量,结果表明突变株的赤霉素含量为36 ng/ml,而对照植株的赤霉素含量为900 ng/ml。对突变株外施赤霉素,发现矮秆突变株的株高和花粉育性均可得到恢复。这些结果表明该突变株为赤霉素缺陷型突变。4. 用荧光定量PCR方法比较突变株与对照植株中内根贝壳杉烯氧化酶和赤霉素20氧化酶的转录水平,结果表明突变株的KO转录水平比对照植株分别提高了6倍(苗期)和16倍(成熟期),突变株的GA20ox转录水平与对照植株在苗期无明显差异,在成熟期突变株较对照植株则提高了10倍左右。这些结果表明该矮秆突变体与赤霉素的生物合成途径密切相关,而且极有可能在赤霉素的生物合成途径早期就发生了改变。5. 以簇毛麦总基因组为模板,同源克隆了GenBank登录号为EU142950,RT-PCR分离克隆了簇毛麦的GA3ox基因cDNA全长序列,分析结果表明该cDNA全长1206bp,含完整编码区1104bp,推测该序列编码蛋白含368个氨基酸残基,分子量为40.063KD,等电点为6.27。预测的氨基酸序列含有双加氧酶的活性结构,在酶活性中心2个Fe离子结合的氨基酸残基非常保守。该序列与小麦、大麦和水稻的GA3ox基因一致性分别为98%、96%、86%。基因组序列与cDNA序列在外显子部分一致,在478-715bp和879-1019bp处分别含238bp和140bp的内含子。6. 通过RT-PCR技术克隆了簇毛麦的GA20ox基因全长,命名为DvGA20ox,GenBank登录号为EU142949。该基因全长1080个碱基,编码359个氨基酸,具有典型的植物GA20ox基因结构。该基因编码的蛋白质与小麦、大麦、黑麦草等GA20ox蛋白的同源性分别为98%,97% 和91%。该序列重组到原核表达载体pET-32a(+)上,将获得的重组子pET-32a(+)-DvGA20ox转化大肠杆菌BL21pLysS后用IPTG进行诱导表达。SDS-PAGE分析表明,DvGA20ox基因在大肠杆菌中获得了高效表达,融合蛋白分子量为55kDa。定量PCR分析表明,该基因在簇毛麦不同器官中的表达差异明显:叶片中表达水平最高,根部表达水平次之,茎部和穗中表达较弱。在外施赤霉素后,该基因的表达水平在两小时以后急剧下降,表明该基因的表达受自身的反馈调节。本研究结果认为,(1)该簇毛麦矮秆突变体为单基因的隐性突变;(2)该矮秆突变体为赤霉素敏感突变,内源赤霉素含量检测表明突变体的内源性赤霉素含量仅为对照植株的1/30;(3)荧光定量PCR结果表明突变株的赤霉素生物合成途径的关键酶基因表达水平比对照植株高,而且突变植株的赤霉素生物合成改变很可能发生在赤霉素生物合成途径的早期;(4)GA20ox有表达的组织特异性,且受到自身产物的反馈调节。 Plant height is an impotrant agronomic trait of triticeae crops.Semi-dwarf cropcultivars, including those of wheat, maize and rice, have significantly increased grainproduction that has been known as “green revolution”. The new dwarf varieties couldraise the harvest Index at the expense of straw biomass, and, at the sametime, improvelodging resistance and responsiveness to nitrogen fertilizer. Moreover, dwarf traits ofplant are crucial for elucidating mechanisms for plant growth and development aswell. In many plant species, various dwarf mutants have been isolated and theirmodles of inheritance and physiology also have been widely investigated.The causesfor their dwarf phenotypes were found to be associated with plant hormones,especially, gibberellins GAs.Dasypyrum villosum Candargy (syn.Haynaldia villosa) is a cross-pollinating,diploid (2n = 2x = 14) annual species that belongs to the tribe Triticeae. It is native toSouthern Europe and West Asia, especially the Caucasuses, and grows underconditions unfavorable to most cultivated crops. The genome of D. villosum,designated V by Sears, is considered an important donor of genes to wheat for improving powdery mildew resistance, take-all, eyespot, and plant and seed storageprotein content. A spontaneous dwarf mutant was found in D. villosum populations.The biological character and modles of inheritance of this dwarf mutant are studied.The cell length of stem cell is observed. The influence of extraneous gibberellin tothe dwarf mutant is also examined; the transcript level of key enzyme of gibberellinbiosynthesis pathway in mutant and control plants is compared. GA3ox and GA20oxare cloned and its expression pattern is researched.1. The dwarf mutant showed no difference with control plants at seedlingstage.At mature stage, the average height of control plants were 110cm and the dwarfplants were 33cm. The height of the mutant plant was only one third of the normalplants due to the shortened internodes. Cytology observation showed that theelongation of stem epidermal and the parenchyma cells were reduced. The dwarfmutant also shows partly male sterile. Pollen viability test indicates that more than80% of the pollen of the mutant is not viable.2. The inheritance modle of this dwarf mutant is studied. All The F1 plantsshowed normal phenotype indicating that the dwarfism is controlled by recessivealleles. Among the 168 F2 plants, there are 130 normal plants and 30 dwarf plants, thesegregation proportion accord with Mendel’s 3:1 segregation. We therefore proposethat this dwarf phenotype is controlled by a single recessive gene.3. Quantitative analyses of endogenous GA1+3 in the young seeds indicated thatthe content of GA1+3 was 36ng/ml in mutant plants and 900ng/ml in normal plants.The endogenous bioactive GA1+3 in mutant plants are only about 1/30 of that innormal plants. In addition, exogenously supplied GA3 could considerably restore themutant plant to normal phenotype. These results showed that this mutant wasdefective in the GA biosynthesis.4. More than ten enzymes are involved in GA biosynthesis. KO catalyzes thefirst cytochrome P450-mediated step in the gibberellin biosynthetic pathway and themutant of KO lead to a gibberellin-responsive dwarf mutant. GA20ox catalyze therate-limited steps so that their transcript level will influence the endogenous GAbiosynthesis and modifies plant architecture. The relative expression levels of genesencoding KO and GA20ox were quantified by real time PCR to assess whether thechanges in GA content correlated with the expression of GA metabolism genes andwhere the mutant occurred during the GA biosynthesis pathway. In mutant plants,the transcript levels of KO increased about 6-fold and 16-fold at the seedling stage and elongating stage respectively comparing with the normal plants. For theseedlings, there was no notable difference in the expression of GA20ox betweenmutant and normal plants. At the elongating stage, GA20ox transcript increased 10times in mutant plants, suggesting that the GA biosynthesis pathway in mutant plantshad changed from the early steps rather than the late steps.5. A full length cDNA of D. villosum gibberellin 3β-hydroxylase homology(designated as DvGA3ox) was isolated and consisted of 1206bp containing an openreading frame of 1104bp encoding 368 predicted amino acid residues. Identityanalysis showed that the gibberellin 3β-hydroxylase nucleotide sequence shared 98%,96% and 86% homology with that of wheat, barley and rice. The predicted peptidecontained the active-site Fe of known gibberellin 3β-hydroxylase and the regionhomologous to wheat, barley and Arabidopsis. The genomic clone of gibberellin3β-hydroxylase has two introns.6. The full-length cDNA of D. villosum gibberellin 20 oxidase (designated asDvGA20ox) was isolated and consisted of 1080-bp and encoded 359 amino acidresidues with a calculated mol wt of 42.46 KD. Comparative and bio-informaticsanalyses revealed that DvGA20ox had close similarity with GA20ox from otherspecies and contained a conserved LPWKET and NYYPXCQKP regions. Tissueexpression pattern analysis revealed DvGA20ox expressed in all the tissues that wereexamined and the highest expression of DvGA20ox in expanding leaves followed byroots. Heterologous expression of this cDNA clone in Escherichia coli gave a fusionprotein that about 55KD. Transcript levels of DvGA20ox dramatically reduced twohours after application of biologically active GA3, suggesting that the biosynthesis ofthis enzymes might be under feedback control.