25 resultados para Planktonic Microalgae.
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A lysing-bacterium DC10, isolated from Dianchi Lake of Yunnan Province, was characterized to be Pseudomonas sp. It was able to lyse some algae well, such as Microcystis viridis, Selenastrum capricomutum, and so on. In this study, it was shown that the bacterium lysed the algae by releasing a substance; the best lytic effects were achieved at low temperatures and in the dark. Different concentrations of CaCl2 and NaNO3 influenced the lytic effects; the ability to lyse algae decreased in the following order: pH 4 > pH 9 > pH 7 > pH 5.5. It was significant to develop a special technology with this kind of bacterium for controlling the bloom-forming planktonic microalgae.
Resumo:
In order to investigate the possible impacts of increased atmospheric CO2 levels on algal growth and photosynthesis, the influence of CO2 concentration was tested on three planktonic algae (Chlamydomonas reinhardtii, Chlorella pyrenoidosa, and Scenedesmus obliquus). Increased CO2 concentration enhanced significantly the growth rate of all three species. Specific growth rates reached maximal values at 30, 100, and 60 muM CO2 in C. reinhardtii, C pyrenoidosa, and S. obliquus, respectively. Such significant enhancement of growth rate with enriched CO2 was also confirmed at different levels of inorganic N and P, being more profound at limiting levels of N in C pyrenoidosa and P in S. obliquus. The maximal rates of net photosynthesis, photosynthetic efficiency and light-saturating point increased significantly (p<0.05) in high-CO2-grown cells. Elevation of the CO2 levels in cultures enhanced the photoinhibition of C. reinhardtii, but reduced that of C pyrenoidosa and S. obliquus when exposed to high photon flux density. The photo-inhibited cells recovered to some extent (from 71% to 99%) when placed under dim light or in darkness, with better recovery in high-CO2-grown C. pyrenoidosa and S. obliquus. Although pH and pCO(2) effects cannot be distinguished from this study, it can be concluded that increased CO2 concentrations with decreased pH could affect the growth rate and photosynthetic physiology of C. reinhardtii, C. pyrenoidosa, and S. obliquus.
Resumo:
Isolation of high neutral lipid-containing microalgae is key to the commercial success of microalgae-based biofuel production. The Nile red fluorescence method has been successfully applied to the determination of lipids in certain microalgae, but has been unsuccessful in many others, particularly those with thick, rigid cell walls that prevent the penetration of the fluorescence dye. The conventional "one sample at a time" method was also time-consuming. In this study, the solvent dimethyl sulfoxide (DMSO) was introduced to microalgal samples as the stain carrier at an elevated temperature. The cellular neutral lipids were determined and quantified using a 96-well plate on a fluorescence spectrophotometer with an excitation wavelength of 530 nm and an emission wavelength of 575 run. An optimized procedure yielded a high correlation coefficient (R-2 = 0.998) with the lipid standard triolein and repeated measurements of replicates. Application of the improved method to several green algal strains gave very reproducible results with relative standard errors of 8.5%, 3.9% and 8.6%, 4.5% for repeatability and reproducibility at two concentration levels (2.0 mu g/mL and 20 mu g/mL), respectively. Moreover, the detection and quantification limits of the improved Nile red staining method were 0.8 mu g/mL and 2.0 mu g/mL for the neutral lipid standard triolein, respectively. The modified method and a conventional gravimetric determination method provided similar results on replicate samples. The 96-well plate-based Nile red method can be used as a high throughput technique for rapid screening of a broader spectrum of naturally-occurring and genetically-modified algal strains and mutants for high neutral lipid/oil production. (C) 2009 Published by Elsevier B.V.
Resumo:
We investigated diel vertical migrations (DVM) and distributions of rotifers in summer, 2004 and spring, 2005, in Xiangxi Bay of the Three Gorges Reservoir, China. Water temperature, pH, conductivity, and phytoplankton were closely related to rotifer vertical distribution, while dissolved oxygen had no relationship with the vertical distribution of rotifers. The species composition and population density of rotifers changed significantly between seasons. However, rotifer vertical distributions in both seasons were similar. They aggregated at specific depths in the water column. All the rotifer species inhabited the surface layers (0.5-5 m). Generally, the rotifers did not display DVM except for Polyarthra vulgaris (in summer), which performed reverse migration. The reason that rotifers did not perform DVM may be explained by the low abundance of competitors and predators and the high density of food resources at the surface strata.
Resumo:
Our studies investigated the physico-chemical properties of alkaline phosphatase excreted by D. magna. This cladoceran mainly released alkaline phosphatase, though it also released a small amount of acid phosphatase. The alkaline phosphatase showed a broad pH optimum (8.05-10.0), and had a broad optimum temperature (30-35 degrees C) with a temperature coefficient (Q(10)) of 2.45. The K-m of the enzyme is 0.15 +/- 0.02 mM when p-nitrophenyl phosphate is used as a substrate, and the V-max is 0.43 +/- 0.01 mu M pNP mg(-1) DW h(-1). Even though alkaline phosphatase had been incubated in chloroform saturated with WC medium for 13 days, its activity was 54% that of the original. The enzyme was strongly inactivated by EDTA, and appeared to be zinc dependent. The alkaline phosphatase activity remained constant when D. magna was fed different quantities of Chlorella sp. The sensitivity of D. magna phosphatase activity to phosphate was time-dependent. During the first 16 hrs, the enzyme was insensitive to phosphate addition, after 24 hrs incubation the enzyme became sensitive to phosphate addition.
Resumo:
A strain of microalgae (Anabaena siamensis) had been cultured in a miniaturized bioreactor during a retrievable satellite flight for 15 days. By means of remote sensing equipment installed in the satellite, we gained the growth curve of microalgae population in space every day in real time. The curve indicated that the growth of microalgae in space was slower than the control on ground. Inoculation of the retrieved microalgae culture showed that the growth rate was distinctively higher than ground control. But after several generations, both cultures indicated similar growth rates. Those data showed that algae, can adapt to space environment easily which may be valuable for designing more complex bioreactor and controlled ecological life support system in future experiment. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Changing the ratio of light-harvesting pigments was regarded as an efficient way to improve the photosynthesis rate in microalgae, but the underlying mechanism is still unclear. In the present study, a mutant of Anabeana simensis (called SP) was selected from retrieved satellite cultures. Several parameters related with photosynthesis, such as the growth, photosynthesis rate, the content of photosynthetic pigment, low temperature fluorescence spectrum (77K) and electron transport rate, were compared with those of the wild type. It was found that the change in the ratio of light-harvesting pigments in the mutant led to more efficient light energy transfer and usage in mutant than in the wild type. This may be the reason why the mutant had higher photosynthesis and growth rates.
Resumo:
Using remote sensing technique, we investigated real-time Nostoc sphaeroides Kiltz (Cyanobacterium) in Closed System under microgravity by SHENZHOU-2 spacecraft in January 2001. The experiments had 1g centrifuges in space for control and ground control group experiments were also carried out in the same equipments and under the same controlled condition. The data about the population growth of Nostoc sp. of experiments and temperature changes of system were got from spacecraft every minute. From the data, we can find that population growth of Nostoc sp. in microgravity group was higher than that of other groups in space or on ground, even though both the control I g group in space and I g group on ground indicated same increasing characteristics in experiments. The growth rate of 1.4g group (centrifuged group on ground) was also promoted during experiment. The temperature changes of systems are also affected by gravity and light. Some aspects about those differences were discussed. From the discussion of these results during experiment, it can be found that gravity is the major factor to lead to these changes. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Enclosure experiments with three treatments (sediment addition, sediment + nitrogen enrichment, sediment + phosphorus enrichment) and unfertilized controls were performed in shallow hypereutrophic Lake Donghu during the summer of 2000. Dense Microcystis aeruginosa blooms occurred in all the enclosures during the experimental period but not in the surrounding lake water. Generally, the dominant rotifers were Polyarthra vulgalis, Filinia longiseta, Proales sp. and Asplanchna sp. at the beginning of the experiment, followed by a shift to Brachionus calyciflorus, Trichocerca similis, Cephalodella catellina and Anuraeopsis fissa, and finally to F. longiseta, Proales sp. and Keratella cochleris. M. aeruginosa blooms strongly suppressed the larger Diaphanosoma brachyurum but enhanced the development of the smaller cladocerans and rotifers that probably efficiently utilized organic matter from M. aeruginosa through the detritus food chain. The smaller cladoceran and rotifers coexisted successfully throughout the experimental period.
Resumo:
1. The long-term changes (1956-1998) in density and species composition of planktonic rotifers were studied at two sampling stations (I, II) of Lake Donghu, a shallow eutrophic Chinese Lake densely stocked with filter-feeding fishes. Annual average densities of rotifers increased with an increase in fish yield and eutrophication, whilst species number decreased from 82 in 1962-1963 to 62 in 1994-1998. 2. During 1962-98, some species such as Anuraeopsis fissa, Polyarthra spp. (including P. dolichoptera & P. vulgaris), Trichocerca pusilla and Synchaeta oblonga increased their percentage in abundance remarkably, whilst the proportion of Keratella cochlearis decreased at two relatively eutrophic stations from 19 to 4.2% at Station I and from 30 to 3.2% at Station IL 3. The high r(max) of A. fissa probably made it more successful than other rotifers under high predation pressure by planktivorous fish. The decrease in the K. cochlearis population might be attributed partly to predation by Cyclops vicinus. 4. Small rotifers were less vulnerable to fish predation than large-sized cladocerans. Decreases in cladocerans coincided with increases in rotifers, suggesting that the indirect effect of fish predation on cladocerans might have partly contributed to the population development of rotifers in Lake Donghu during recent decades. 5. We also conducted surveys (1994-1998) of seasonal dynamics of rotifers at four sampling stations (I-IV) which have varied in trophic status after fragmentation of the lake in the 1960s. A total of 75 species were identified at the four stations. Both densities and biomass of rotifers were considerably higher in the two more eutrophic stations than in the two less eutrophic stations. This indicates that the population increase of rotifers at Stations I and II during recent decades might be partly attributed to eutrophication of the lake water.
Resumo:
Polyunsaturated fatty acids (PUFAs) are important components of infant and adult nutrition because they serve as structural elements of cell membranes. Fatty acid desaturases are responsible for the insertion of double bonds into pre-formed fatty acid chains in reactions that require oxygen and reducing equivalents. In this study, the genome-wide characterization of the fatty acid desaturases from seven eukaryotic photosynthetic microalgae was undertaken according to the conserved histidine-rich motifs and phylogenetic profiles. Analysis of these genomes provided insight into the origin and evolution of the pathway of fatty acid biosynthesis in eukaryotic plants. In addition, the candidate enzyme from Chlamydomonas reinhardtii with the highest similarity to the microsomal Delta 12 desaturase of Chlorella vulgaris was isolated, and its function was verified by heterologous expression in yeast (Saccharomyces cerevisiae).
A broad deglacial delta C-13 minimum event in planktonic foraminiferal records in the Okinawa Trough
Resumo:
The equatorial Pacific upwelling zone has been suspected of playing an important role in the global atmospheric CO2 changes associated with glacial-interglacial cycles. In order to assess the influencing scope of the surface water deglacial delta(13)C minimum in the tropical low-latitude Pacific, the core DGKS9603, collected from the middle Okinawa Trough, was examined for 4513 C records of planktonic foraminifera N. dutertrei and G. ruber. The planktonic foraminiferal delta(13)C records show a clear decreasing event from 20 to 6 cal. kaBP., which is characterized by long duration of about 14 ka and amplitude shift of 0.4 x 10(-3). Its minimum value occurred at 15.7 cal kaBP. The event shows fairly synchrony with the surface water deglacial delta(13)C minimum identified in the tropical Pacific and its marginal seas. Because there is no evidence in planktonic foraminiferal fauna and 45180 records for upwelling and river runoff enhancement, the broad deglacial delta(13)C minimum event in planktonic foraminiferal records revealed in core DGKS9603 might have been the direct influencing result of the deglacial surface water of the tropical Pacific. The identification for the event in the Okinawa Trough provides new evidence that the water evolution in the tropical low-latitude Pacific plays a key role in large regional, even global carbon cycle.
Resumo:
Planktonic foraminiferal faunas, oxygen isotope and modern analog technique sea surface temperature records were obtained in piston core DGKS9603 (28degrees08.869'N, 127degrees16.238'E, water depth 1100 in) collected from the middle Okinawa Trough. During the last glaciation, four cold events were identified and correlate Heinrich events (HE) H2-5 of the last 45 ka. During the last deglaciation, core DGKS9603 has begun to be influenced by the Kuroshio since about 16 cal ka BP. Three weakenings of this warm current occurred at about 2.8-5.3, 11.4 and 15.5 cal ka BP respectively. Among the three fluctuations, the oldest one is synchronous with HE1 and could be a response to the strong cooling observed in the North Atlantic Ocean. The fluctuation occurring at about 11.4 cal ka ago corresponds to the Younger Dryas within the age error bars. Our observations provide new evidence that the HEs documented from Greenland and the northern North Atlantic had a global climatic impact. Changes in the intensity of the East Asian monsoon could be the main mechanism responsible for the paleoccanographic variations observed in the Okinawa Trough. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The evolution and variation history of the Tsushima warm current during the late Quaternary was reconstructed based on the quantitative census data of planktonic foraminiferal fauna, together with oxygen and carbon isotope records of mixed layer dweller a ruber and thermocline dweller N. dutertrei in piston core CSH1 and core DGKS9603 collected separately from the Tsushima warm current and the Kuroshio dominated area. The result showed that the Tsushima warm current vanished in the lowstand period during 40-24 cal ka BP, while the Kuroshio still flowed across the Okinawa Trough, arousing strong upwelling in the northern Trough. Meanwhile, the influence of freshwater greatly increased in the northern Okinawa Trough, as the broad East China Sea continental shelf emerged. The freshwater reached its maximum during the last glacial maximum (LGM), when the upwelling obviously weakened for the lowest sea-level and the depression of the Kuroshio. The modern Tsushima warm current began its development since 16 cal ka BP, and the impact of the Kuroshio increased in the middle and northern Okinawa Trough synchronously during the deglaciation and gradually evolved as the main water source of the Tsushima current. The modern Tsushima current finally formed at about 8.5 cal ka BP, since then the circulation structure has been relatively stable. The water of the modern Tsushima current primarily came from the Kuroshio axis. A short-term wiggle of the current occurred at about 3 cal ka BP, probably for the influences from the enhancement of the winter monsoon and the depression of the Kuroshio. The cold water masses greatly strengthened during the wiggle.