4 resultados para Plan fines 2
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
InGaN/GaN multi-quantum-well blue (461 +/- 4 nm) light emitting diodes with higher electroluminescence intensity are obtained by postgrowth thermal annealing at 720 C in O-2-ambient. Based on our first-principle total-energy calculations, we conclude that besides dissociating the Mg-H complex by forming H2O, annealing in O-2 has another positive effect on the activation of acceptor Mg in GaN. Mg can be further activated by the formation of an impurity band above the valence band maximum of host GaN from the passivated Mg-Ga-O-N complex. Our calculated ionization energy for acceptor Mg in the passivated system is about 30 meV shallower than that in pure GaN, in good agreement with previous experimental measurement. Our model can explain that the enhanced electroluminescence intensity of InGaN/GaN MQWs based on Mg-doped p-type GaN is due to a decrease in the ionization energy of Mg acceptor with the presence of oxygen. (C) 2008 American Institute of Physics.
Resumo:
An improved 2 ×2 silicon-on-insulator Mach-Zehnder thermo-optical switch is designed and fabricated, which is based on strongly guided multimode interference couplers and single- mode phase-shifting arms. The multimode interference couplers and input/output waveguides are deeply etched to improve coupler performances and coupler-waveguide coupling efficiencies. However, shallow etching is used in the phase-shifting arms to guarantee single-mode property. The strongly guided coupler presents an attractive uniformity about 0. 03 dB and a low propagation loss of -0.6 dB. The 2× 2 switch shows an insertion loss as low as -6.8 dB, where the fiber-waveguide coupling loss of -4.3 dB is included, and the response-time is measured as short as 6.8 μs, which are much better than our previous results.
Resumo:
Gas condensate reservoir research involves not only structure sediment reservoir liquid properties characterization but also the change of the temperature field, the change of the pressure field, the change of liquid phase and the reservoir sensitivity. To develop the gas condensate reservoir effectively .we must depict the static properties of the oil and gas system ,build exact and comprehensive parameter field, predict the rule of dynamic change and do the necessary reservoir characterization development plan dynamic prediction direct production. The MoBei Oil and Gas Field is the first gas condensate reservoirs which is found by the Xinjiang Oil Field Company in ZhunGaEr basin belly.it has deserved some knowledge after prospect evaluation, the MoBei Oil and Gas Field start development ,it is one of the important development blocks of Xinjiang Oil Field Company productivity constuction. During its development , it gradually appears some problems, such as complex oil and gas phase, great change of reservoir stretch .uncertain reservoir type and scale, controling its development strategy and plan difficultly. To deserve the high efficient development and long-term stable production of the gas condensate reservoir, it is necessary to characterize it systematically and form a suit of scientific development strategy. This thesis take the MoBei zone SanGongHe sand group reservoir as research object, applied advanced log techniques ,such as the nulear magnetism log ,MDT testing .etc. After comprehensive research of loging geology information, set up a suit of methods to identify oil gas water layer .these methods can identify the gas-oil level and the oil-water level. On the basis of reasonable development object system, according fine structure interpretation and structure modeling. build any oil water column height of the reservoir accurately. Through carefully analysis of the basic theory and method of reservoir seism prediction. optimize a reservoir inversion method .technique. software fitting the research region aiming strata, set up the GR field, porosity field, Rt field, impedence field .permeability field and initial oil saturation field, generating the base of quantity reservoir characterization. Discussing the characteristic of reservoir fluid and the movement and reallocating of muti-phase fluid in reservoir. And according the material of 100 soviet gas condensate reservoir ,build the recognition method and mode of gas condensate reservoir. Building the 3D geology model ,carry on the static and production evaluation, propose the development strategy and improve plan , provide the base of increasing reserves and advancing production and enriching the prospect development theory of the gas condensate reservoi
Resumo:
Kela-2 gas field in Tarim Basin is the main supply source for West-to-East Pipeline project, also the largest abnormally-pressured gas field discovered in China currently. The geological characterization, fine geological modeling and field development plan are all the world-class difficult problems. This work includes an integrated geological and gas reservoir engineering study using advanced technology and approaches, the scientific development plan of Kela-2 gas field as well as the optimizations of the drilling, production and surface schemes. Then, it's expected that the Kela-2 gas field can be developed high-efficiently.Kuche depression is one part of the thrust belt of the South Tianshan Mountains, Kela-2 field is located at the Kelasu structural zone in the north of Kuche depression. The field territory is heavily rugged with deeply cut gullies, complex geological underground structure, variable rock types, thrust structure development. Therefore, considerable efforts have been made to develop an integrated technique to acquire, process and interpret the seismic data in complicated mountain region. Consequently a set of seismic-related techniques in the complicated mountain region has been developed and successfully utilized to interpret the structure of Kela-2 gas field.The main reservoir depositional system of Kela 2 gas field is a platform - fan delta - braided river system. The reservoir rocks are medium-fine and extremely fine grained sandstones with high structure maturity and low composition maturity. The pore system structure is featured by medium-small pore, medium-fine throat and medium-low assortment. The reservoir of Kela-2 gas field is characteristic of medium porosity and medium permeability. The pay zone is very thick and its lateral distribution is stable with a good connection of sand body. The overpressure is caused mainly by the strongly tectonic squash activities, and other factors including the later rapid raise and compartment of the high-pressure fluid, the injection of high-pressure fluid into the reservoir.Based on the deliverability tests available, the average binomial deliverability equation is provided applicable for the overall field. The experimental results of rock stress-sensitive tests are employed to analyze the change trend of petrophysical properties against net confining stress, and establish the stress-based average deliverability equation. The results demonstrate the effect of rock deformation on the deliverability is limited to less than 5% in the early period of Kela-2 gas field, indicating the insignificant effect on deliverability of rock deformation.In terms of the well pattern comparisons and development planning optimizations, it is recommended that the producers should be located almost linearly along the structural axis. A total of 9 producers have a stable gas supply volume of 10.76 BCMPY for 17 years. For Kela-2 gas field the total construction investment is estimated at ¥7,697,690,000 RMB with the internal earning rate of 25.02% after taxation, the net present value of ¥7,420,160,000 RMB and the payback period of 5.66 years. The high profits of this field development project are much satisfactory.