55 resultados para Piezoelectric polymer composites

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of processing conditions on the electrical and dynamic behavior of carbon black (CB) filled ethylene/ethylacrylate copolymer (EEA) composites was investigated. The compounds were prepared by two methods, solution blending and mechanical mixing. Compared with the solution counterpart, the mechanical composites have a strong positive temperature coefficient (PTC) effect and a high dynamic elastic modulus, which results from the good dispersion state of carbon black in EEA, i.e. the strong interaction between carbon black and EEA. It can be concluded that the strong interaction between polymer and carbon black is essential for composites to have a high PTC intensity, good electrical reproducibility and high dynamic elastic modulus. Copyright (C) 1996 Published by Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of interlaminar fracture tests to measure the delamination resistance of unidirectional composite laminates is now widespread. However, because of the frequent occurrence of fiber bridging and multiple cracking during the tests, it leads to artificially high values of delamination resistance, which will not represent the behavior of the laminates. Initiation fracture from the crack starter, on the other hand, does not involve bridging, and should be more representative of the delamination resistance of the composite laminates. Since there is some uncertainty involved in determining the initiation value of delamination resistance in mode I tests in the literature, a power law of the form G(IC) = A.DELTA alpha(b) (where G(IC) is mode I interlaminar fracture toughness and DELTA alpha is delamination growth) is presented in this paper to determine initiation value of mode I interlaminar fracture toughness. It is found that initiation values of the mode I interlaminar fracture toughness, G(IC)(ini), can be defined as the G(IC) value at which 1 mm of delamination from the crack starter has occurred. Examples of initiation values determined by this method are given for both carbon fiber reinforced thermoplastic and thermosetting polymers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A general incremental micromechanical scheme for the nonlinear behavior of particulate composites is presented in this paper. The advantage of this scheme is that it can reflect partly the effects of the third invariant of the stress on the overall mechanical behavior of nonlinear composites. The difficulty involved is the determination of the effective compliance tensors of the anisotropic multiphase composites. This is completed by making use of the generalized self-consistent Mori-Tanaka method which was recently developed by Dai et al. (Polymer Composites 19(1998) 506-513; Acta Mechanica Solida 18 (1998) 199-208). Comparison with existing theoretical and numerical results demonstrates that the present incremental scheme is quite satisfactory. Based on this incremental scheme, the overall mechanical behavior of a hard-particle reinforced metal matrix composite with progressive particle debonding damage is investigated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) have been regarded as ideal reinforcements of high-performance composites with enormous applications. However, the waviness of the CNTs and the interfacial bonding condition between them and the matrix are two key factors that influence the reinforcing efficiency. In this paper, the effects of the waviness of the CNTs and the interfacial debonding between them and the matrix on the effective moduli of CNT-reinforced composites are studied. A simple analytical model is presented to investigate the influence of the waviness on the effective moduli. Then, two methods are proposed to examine the influence of the debonding. It is shown that both the waviness and debonding can significantly reduce the stiffening effect of the CNTs. The effective moduli are very sensitive to the waviness when the latter is small, and this sensitivity decreases with the increase of the waviness. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The uniaxial tension experiments on glass-fiber-reinforced epoxy matrix composites reveal that the fragmentations of fibers display vertically aligned fracture, clustered fracture, coordinated fracture, and random fracture with the increase of inter-fiber spacing. The finite element analysis indicates that the fragmentations of fibers displaying different phenomena are due to the stress concentration as well as the inherent randomness of fiber defects, which is the dominant factor. The experimental results show that matrices adjacent to the fiber breakpoints all exhibit birefringent-whitening patterns for the composites with different interfacial adhesion strengths. The larger the extent of the interfacial debonding, the less the domain of the birefringent-whitening patterns. The numerical analysis indicates that the orientation of the matrix adjacent to a fiber breakpoint is caused by the interfacial shear stress, resulting in the birefringent-whitening patterns. The area of shear stress concentrations decides on the domain of the birefringent-whitening patterns.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Experimental observations on micromorphologies around broken fibers in glass-fiber-reinforced epoxy matrix composites reveal different kinds of highly oriented patches at the circumambience of broken fibers, whereas the bulk of the matrix has been observed to be largely isotropic. These patches are interpreted to correlated areas where the stress gradients of the matrix are formed after fiber breaking, but the underlying cause for the orientation is still unknown. The authors have modified an embedded cell model to explain the experimental phenomena. The finite element simulation indicates that the surfaces around broken fibers display a change from an extension micromorphology to a mixed tension and shear micromorphology with the increase of applied strain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Poly(3-butylthiophene) (P3BT)/insulating-polymer composites with high electrical conductivity have been prepared directly from the solution. These composites exhibit much higher conductivity compared to pure P3BT with the same preparation method provided that P3BT content is higher than 10 wt %. Morphological studies on both the pure P3BT and the composites with insulating polymer show that P3BT highly crystallizes and develops into whisker-like crystals. These nanowires are homogeneously distributed within the insulating polymer matrix and form conductive networks, which provide both extremely large interface area between conjugated polymer and insulating polymer matrix and highly efficient conductive channels through out the whole composite. In contrast, the conductivity enhancement of P3HT/PS composite is not so obvious and drops down immediately with increased PS content due mainly to the absence of highly crystalline whisker-like crystals and much larger scale phase separation between the components. The results presented here could further illuminate the origin of conductivity formation in organic semiconducting composites and promote applications of these polymer semiconductor/insulator composites in the fields of organic (opto-)electronics, electromagnetic shielding, and antistatic materials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The electrical resistivity of low-density polyethylene/carbon black composites irradiated by Co-60 gamma-rays was investigated as a function of temperature. The experimental results obtained by scanning electron microscopy, solvent extraction techniques, and pressure-specific volume-temperature analysis techniques showed that the positive temperature coefficient (PTC) and negative temperature coefficient (NTC) effects of the composites were influenced by the irradiation dose, network forming (gel), and soluble fractions (Sol). The NTC effect was effectively eliminated when the radiation dose reached 400 kGy. The results showed that the elimination of the NTC effect was related to the difference in the thermal expansion of the gel and Sol regions. The thermal expansion of the sol played an important role in both increasing the PTC intensity and decreasing the NTC intensity at 400 kGy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The positive temperature coefficient (PTC) and negative temperature coefficient (NTC) effect of carbon black (CB) filled low density polyethylene (LDPE) composites was studied using electrical resistivity spectra, DSC, tensile mechanical analysis (TMA) and small-angle X-ray scattering (SAXS) techniques. The three LDPEs used have a similar crystallinity and different melting index (MI). The experimental results indicate that the CB has no significant effect on the crystallinity and the long spacing of crystalline domains of LDPE. Based upon the TMA and dynamic elastic modulus spectra, it can be concluded that the PTC effect is related to the thermal expansion of the polymer matrix, and the NTC effect is caused by a decrease of the elastic modulus of the polymer at high temperatures. The NTC effect can be reduced by enhancing either the elastic modulus or the interaction between carbon black and matrix. (C) 1997 Elsevier Science Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Flexible organic elastomeric nanoparticles (ENP) and two kinds of rigid inorganic silica nanoparticles were dispersed respectively into a bisphenol-A epoxy resin in order to tailor and compare the performance of mechanical properties. It was found that the well-dispersed flexible ENP greatly enhanced the toughness of the epoxy with the cost of modulus and strength. Comparatively, the rigid silica nanoparticles improved Young's modulus, tensile strength and fracture toughness simultaneously. Both fumed and sol-gel-formed nanosilica particles conducted similar results in reinforcing the epoxy resin, although the latter exhibited almost perfect nanoparticle dispersion in matrix. The toughening mechanisms of nanocomposites were further discussed based on fractographic analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel multifunctional inorganic-organic photorefractive (PR) poly(N-vinyl)-3-[p-nitrophenylazolcarbazolyl-CdS nanocomposites with different molar ratios of US to poly(N-vinyl)-3-[p-nitrophenylazo]carbazolyl (PVNPAK) were synthesized via a postazo-coupling reaction and chemically hybridized approach, respectively. The nanocomposites are highly soluble and could be obtained as film-forming materials with appreciably high molecular weights and low glass transition temperature (T,) due to the flexible spacers. The PVNPAK matrix possesses a highest-occupied molecular orbital value of about -5.36 eV determined from cyclic voltammetry. Second harmonic generation (SHG) could be observed in PVNPAK film without any poling procedure and 4.7 pm/V of effective second-order nonlinear optical susceptibility is obtained. The US particles as photosensitizers had a nanoscale size in PVNPAK adopting transmission electron microscopy. The improvement of interface quality between US and polymer matrix is responsible for efficient photoinduced charge generation efficiency in the nanocomposites. An asymmetric optical energy exchange between two beams on the polymer composites PVNPAK-CdS/ECZ has been found even without an external field in two-beam coupling (TBC) experiment, and the TBC gain and diffraction efficiency of 14.26 cm(-1) and 3.4% for PVNPAK-5-CdS/ECZ, 16.43 cm(-1) and 4.4% for PVNPAK-15-CdS/ECZ were measured at a 647.1 nm wavelength, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Naphthalocyanine-sensitized multi-walled carbon nanotube (NaPc-MWNT) composites have been synthesized through the pi-stacking between naphthalocyanine (NaPc) and carbon nanotubes. The resultant nanocomposites were characterized with a scanning electron microscope (SEM), a transmission electron microscope (TEM), and by UV - vis absorption and photocurrent spectra. The long-range ordering was observed in the NaPc - MWNT composites by using a TEM. The enhancement in the absorption intensity and the broadening of the absorption wavelength observed in the composite films, which were due to the attachment of NaPc on the MWNT surface, is discussed based on the measured UV - vis absorption spectra. Furthermore, the photoconductivity of the poly( 3-hexylthiophene)(PAT6) - NaPc - MWNT composite film was found to increase remarkably in the visible region and broaden towards the red regions. These new phenomena were ascribed to the larger donor/acceptor (D/A) interface and the formation of a biconsecutive D/A network structure, as discussed in consideration of the photoinduced charge transfer between PAT6 and NaPc - MWNT.