8 resultados para Piñon, Nelida, 1938-. Coração andarilho
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Within the framework of the improved isospin dependent quantum molecular dynamics (ImIQMD) model, the pion emission in heavy-ion collisions in the region 1AGeV is investigated systematically, in which the pion is considered to be mainly produced by the decay of resonances ∆(1232) and N∗(1440). The in-medium dependence and Coulomb effects of the pion production are included in the calculation. Total pion multiplicity and π−/π+ yields are calculated for the reaction 197Au+197Au in central collisions for selected Skyrme parameters SkP, SLy6,Ska, SIII and compared them with the measured data by the FOPI collaboration.
Resumo:
Within the framework of the improved isospin dependent quantum molecular dynamics (ImIQMD) model, pion emission in heavy-ion collisions in the region 1 A GeV is investigated systematically, in which the pion is considered to be mainly produced by the decay of resonances Delta(1232) and N*(1440). The in-medium dependence and Coulomb effects of pion production are included in the calculation. Total pion multiplicity and pi(-)/pi(+) yields are calculated for the reaction Au-197+(197) Au in central collisions for selected Skyrme parameters SkP, SLy6, Ska, SIII and compared with the measured data of the FOPI collaboration.
Resumo:
Based on the isospin-and momentum-dependent hadronic transport model IBUU04, we have investigated the pi(-)/pi(+) ratio in the following three reactions: Ca-48+Ca-48, Sn-124 +Sn-124 and Au-197+Au-197 with nearly the same isospin asymmetry but different masses, at the bombarding energies from 0.25 to 0.6 A GeV. It is shown that the sensitivity of probing the E-sym (rho) with pi(-)/pi(+) increases with increasing the system size or decreasing the beam energy, showing a correlation to the degree of isospin fractionation. Therefore, with a given isospin asymmetry, heavier system at energies near the pion threshold is preferential to study the behavior Of nuclear symmetry energy at supra-saturation densities.
Resumo:
Within the framework of the improved isospin dependent quantum molecular dynamics (ImIQMD) model, the emission of pion in heavy-ion collisions in the region 1 A GeV as a probe of nuclear symmetry energy at supra-saturation densities is investigated systematically, in which the pion is considered to be mainly produced by the decay of resonances Delta(1232) and N*(1440). The total pion multiplicities and the pi(-)/pi(+) yields are calculated for selected Skyrme parameters SkP, SLy6. Ska and SIB, and also for the cases of different stiffness of symmetry energy with the parameter SLy6. Preliminary results compared with the measured data by the FOPI Collaboration favor a hard symmetry energy of the potential term proportional to (rho/rho(0))(gamma s) with gamma(s) = 2. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
Within the framework of the improved isospin-dependent quantum molecular dynamics model, the dynamics of pion emission in heavy-ion collisions in the region of 1A GeV energies as a probe of nuclear symmetry energy at suprasaturation densities is investigated systematically. The total pion multiplicities and the pi(-)/pi(+) yields are calculated for selected Skyrme parameters SkP, SLy6, Ska, and SIII and also for the cases of different stiffness of symmetry energy with the parameter SLy6. The influence of Coulomb potential, symmetry energy, and in-medium pion potential on the pion production is investigated and compared to each other by analyzing the distributions of transverse momentum and longitudinal rapidity and also the excitation functions of the total pion and the pi(-)/pi(+) ratio. The directed flow, elliptic flow, and polar-angle distributions are calculated for the cases of different collision centralities and also the various stiffnesses of the symmetry energies. A comparison of the calculations with the available experimental data is performed.
Resumo:
With an effective Lagrangian approach, we analyze several NN -> NN pi pi channels by including various resonances with mass up to 1.72 GeV. For the channels with the pion pair of isospin zero, we confirm the dominance of N*(1440) -> N sigma in the near-threshold region. At higher energies and for channels with the final pion pair of isospin one, we find large contributions from N*(1440) -> Delta pi, double-Delta, Delta(1600) -> N*(1440)pi, Delta(1600) -> Delta pi and Delta(1620) -> Delta pi. There are also sizable contributions from Delta -> Delta pi, Delta -> N pi, N -> Delta pi, and nucleon pole at energies close to the threshold. We give a good reproduction to the total cross sections up to beam energies of 2.2 GeV except for the pp -> pp pi(0)pi(0) channel at energies around 1.1 GeV and our results agree with the existing data of differential cross sections of pp -> pp pi(+)p pi(-), pp -> nn pi(+)pi(+), and pp -> pp pi(0)pi(0) which are measured at CELSIUS and COSY.
PROBING THE SYMMETRY ENERGY AT SUPRA-SATURATION DENSITIES FROM PION EMISSION IN HEAVY-ION COLLISIONS
Resumo:
Within the framework of the improved isospin dependent quantum molecular dynamics (ImIQMD) model, the emission of pion in heavy-ion collisions in the region 1 A GeV as a probe of nuclear symmetry energy at supra-saturation densities is investigated systematically, in which the pion is considered to be mainly produced by the decay of resonances Delta(1232) and N*(1440). The pi(-)/pi(+) yields are calculated for selected Skyrme parameters SkP, SLy6, Ska and SIII, and also for the cases of different stiffness of symmetry energy with the parameter SLy6. Preliminary results compared with the measured data by the FOPI collaboration favor a hard symmetry energy of the potential term proportional to (rho/rho(0))(gamma s) with gamma(s) = 2.