217 resultados para Photonic band gap

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical study of the defect modes in two-dimensional photonic crystals with deformed triangular lattice is presented by using the supercell method and the finite-difference time-domain method. We find the stretch or shrink of the lattice can bring the change not only on the frequencies of the defect modes but also on their magnetic field distributions. We obtain the separation of the doubly degenerate dipole modes with the change of the lattice and find that both the stretch and the shrink of the lattice can make the dipole modes separate large enough to realize the single-mode emission. These results may be advantageous to the manufacture of photonic crystal lasers and provide a new way to realize the single-mode operation in photonic crystal lasers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used Plane Wave Expansion Method and a Rapid Genetic Algorithm to design two-dimensional photonic crystals with a large absolute band gap. A filling fraction controlling operator and Fourier transform data storage mechanism had been integrated into the genetic operators to get desired photonic crystals effectively and efficiently. Starting from randomly generated photonic crystals, the proposed RGA evolved toward the best objectives and yielded a square lattice photonic crystal with the band gap (defined as the gap to mid-gap ratio) as large as 13.25%. Furthermore, the evolutionary objective was modified and resulted in a satisfactory PC for better application to slab system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use the transfer-matrix method to research the band structures in one-dimensional photonic crystals composed of anomalous dispersion material ( saturated atomic cesium vapor). Our calculations show that that type of photonic crystal possesses an ultra-narrow photonic band gap and this band gap is tunable when altering the electron population in the atomic ground state of the anomalous dispersion material by the optical pumping method. Copyright (C) EPLA, 2007.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the plane-wave expansion method, we have calculated and analysed the changes of photonic band structures arising from two kinds of deformed lattices, including the stretching and shrinking of lattices. The square lattice with square air holes and the triangular lattice with circular air holes are both studied. Calculated results show that the change of lattice size in some special ranges can enlarge the band gap, which depends strongly on the filling factor of air holes in photonic crystals; and besides, the asymmetric band edges will appear with the broken symmetry of lattices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new broadband filter, based on the high-order band gap in one-dimensional photonic crystal (PCs) of the form Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si, has been designed by the plane wave expansion method (PWEM) and transfer matrix method (TMM) and fabricated by lithography. The optical response of this filter to normal-incident and oblique-incident light proves that utilizing the high-order band gaps of PCs is an efficient method to lower the difficulties of fabricating PCs, increase the etching depth of semiconductor materials, and reduce the coupling loss at the interface between optical fibers and PC device. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cladding band structure of air-guiding photonic crystal fibers with high air-filling fraction is calculated in terms of fiber shape variation. The fundamental photonic band gap dependence on structure parameters, air-filling fraction and spacing, is also investigated. The numerical results show that the band gap edges shift toward longer wavelength as the air-filling fraction is increased, whereas the relative band gap width increases linearly. For a fixed air-filling fraction, the band gap edges with respect to spacing keep constant. With this method, the simulation results agree well with the reported data. © 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

III-V pentenary semiconductor AlGaInPAs with a direct band gap of up to 2.0 eV has been grown successfully on GaAs substrates by liquid phase epitaxy;(LPE). With the introduction of the energy bowing parameters of quaternaries, the theoretical calculations agree well with the measured PL peak energy data from pentenary samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A concise pressure controlled isothermal heating vertical deposition (PCIHVD) method is developed, which provides an optimal growing condition with better stability and reproducibility for fabricating photonic crystals (PCs) without the limitation of colloidal sphere materials and sizes. High quality PCs are fabricated with PCIHVD from polystyrene spheres with diameters ranging from 200 nm to 1 mu m. The deep photonic band gap and steep photonic band edge of the samples are most favorable for realizing ultrafast optical devices, photonic chips, and communications. This method makes a meaningful advance in the quality and diversity of PCs and greatly promotes their wide applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TiO2 coatings are prepared on fused silica with conventional electron beam evaporation deposition. After annealed at different temperatures for four hours, the spectra and XRD patterns of TiO2 thin film are obtained. XRD patterns reveal that only anatase phase can be observed in TiO2 coatings regardless of the different annealing temperatures, and with the increasing annealing temperature, the grain size gradually increases. The relationship between the energy gap and microstructure of anatase is determined and discussed. The quantum confinement effect is observed that with the increasing grain size of TiO2 thin film, the band gap energy shifts from 3.4 eV to 3.21 eV. Moreover, other possible influence of the TiO2 thin-film microstructure, such as surface roughness and thin film absorption, on band gap energy is also expected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elastic constants, the bulk modulus, Young's modulus, band-gap bowing coefficients, spontaneous and piezoelectric polarizations, and piezoelectric coefficients of hexagonal AlxGa1-xN ternary alloys are calculated using first-principles methods. The fully relaxed structures and the structures subjected to homogeneous biaxial and uniaxial tension are investigated. We show that the biaxial tension in the plane perpendicular to the c axis and the uniaxial tension along the c axis all reduce the bulk modulus, whereas they reduce and enhance Young's modulus, respectively. We find that the biaxial and uniaxial tension can enhance the bowing coefficients. We also find that the biaxial tension can enhance the total polarization, while the uniaxial tension will suppress the total polarization. (C) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This letter reports on the Raman, optical and magnetic properties of FeNi co-doped ZnO nanowires prepared via a soft chemical solution method. The microstructural investigations show that the NiFe co-dopants are substituted into wurtzite ZnO nanostructure without forming any secondary phase. The co-doped nanowires show a remarkable reduction of 34 nm (267.9 meV) in the optical band gap, while suppression in the deep-level defect transition in visible luminescence. Furthermore, these nanowires exhibit ferromagnetism and an interesting low-temperature spin glass behavior, which may arise due to the presence of disorder and strong interactions of frustrated spin moments of Ni and Fe co-dopants on the ZnO lattice sites. Copyright (C) EPLA, 2009

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spontaneous emission from GaAs/AlGaAs quantum dots (QDs) embedded in photonic crystals with a narrow photonic band gap is studied theoretically. The results show that the decay lifetime is very sensitive to the sizes of QDs, and both inhibited and accelerated emission can occur, which had been indicated in a previous experiment. The Weisskopf-Wigner approximation, good for atoms and molecules, may be incorrect for QDs. A damped Rabi oscillation of the excited state with the transition frequency outside the photonic band gap may appear, which is impossible for atoms and molecules. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a first-principles band-structure method and a special quasirandom structure (SQS) approach, we systematically calculate the band gap bowing parameters and p-type doping properties of (Zn, Mg, Be)O related random ternary and quaternary alloys. We show that the bowing parameters for ZnBeO and MgBeO alloys are large and dependent on composition. This is due to the size difference and chemical mismatch between Be and Zn(Mg) atoms. We also demonstrate that adding a small amount of Be into MgO reduces the band gap indicating that the bowing parameter is larger than the band-gap difference. We select an ideal N atom with lower p atomic energy level as dopant to perform p-type doping of ZnBeO and ZnMgBeO alloys. For N doped in ZnBeO alloy, we show that the acceptor transition energies become shallower as the number of the nearest neighbor Be atoms increases. This is thought to be because of the reduction of p-d repulsion. The N-O acceptor transition energies are deep in the ZnMgBeO quaternary alloy lattice-matched to GaN substrate due to the lower valence band maximum. These decrease slightly as there are more nearest neighbor Mg atoms surrounding the N dopant. The important natural valence band alignment between ZnO, MgO, BeO, ZnBeO, and ZnMgBeO quaternary alloy is also investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The alloy formation enthalpy and band structure of InGaN nanowires were studied by a combined approach of the valence-force field model, Monte Carlo simulation, and density-functional theory (DFT). For both random and ground-state structures of the coherent InGaN alloy, the nanowire configuration was found to be more favorable for the strain relaxation than the bulk alloy. We proposed an analytical formula for computing the band gap of any InGaN nanowires based on the results from the screened exchange hybrid DFT calculations, which in turn reveals a better band-gap tunability in ternary InGaN nanowires than the bulk alloy.